K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

5/ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

PT \(\Leftrightarrow2\left(x^2-4x-6\right)+\sqrt{x^2-4x-5}-1=0\)

\(\Leftrightarrow\left(x^2-4x-6\right)\left(2+\frac{1}{\sqrt{x^2-4x-5}+1}\right)=0\)

\(\Leftrightarrow x^2-4x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{matrix}\right.\)

Vậy..

28 tháng 10 2019

Câu 2 a chắc là bình phương hai vế lên,đặt ẩn phụ rồi... chăng?

25 tháng 7 2019

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

6 tháng 12 2019
https://i.imgur.com/uIbkS6G.jpg
Đề ôn chuyên Toán lần 1 1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm ) b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm ) 2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\)...
Đọc tiếp

Đề ôn chuyên Toán lần 1

1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm )

b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm )

2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\) .Tìm m để (d) cắt Ox , Oy tại A và B sao cho diện tích tam giác OAB lớn nhất . Tính giá trị lớn nhất đó ( 3 điểm )

3 , a, Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\) ( 3 điểm )

b, Giải hệ phương trình (3 điểm ) \(\left\{{}\begin{matrix}2\sqrt{2x+y}=3-2x-y\\x^2-2xy=y^2+2\end{matrix}\right.\)

4, Cho tam giác ABC nhọn nội tiếp (O) . đường tròn tâm J đường kính BC cắt AB,AC ở E và F. Gọi H và K lần lượt là trực tâm tam giác ABC , AEF .Gọi I là tâm đường tròn ngoại tiếp tam giác AEF

a, Chứng minh A,I,H thẳng hàng ( 2 điểm ) b, Chứng minh KH , EF, IJ đồng quy (2 điểm )

5, Cho a,b,c >0 và abc=1 . Chứng minh \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\le1\) ( 2 điểm )

6, CHO (O) . ĐIỂM A Ở NGOÀI ĐƯỜNG TRÒN VẼ 2 TIẾP TUYẾN AB ,AC VÀ CÁT TUYẾN ADE ( D NẰM GIỮA A VÀ E ) . ĐƯỜNG THẲNG QUA D // AB CẮT BC,BE Ở H VÀ K . CHỨNG MINH DH=HK (2 ĐIỂM )

3
NV
12 tháng 5 2020

5.

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(\Rightarrow VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(x+z\right)+xyz}\)

\(VT\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
12 tháng 5 2020

2. Đề bài bạn viết thiếu thì phải

3. a/

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2+5x+1}=a\\\sqrt{4x^2-4x+4}=b\end{matrix}\right.\)

\(\Rightarrow a-b=a^2-b^2\Leftrightarrow a-b=\left(a-b\right)\left(a+b\right)\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)

- Với \(a=b\Rightarrow9x-3=0\Rightarrow x=...\)

- Với \(a+b=1\Rightarrow\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)

\(\Leftrightarrow\sqrt{4x^2+5x+1}+\sqrt{\left(2x-1\right)^2+3}=1\)

\(VT\ge\sqrt{3}>1\Rightarrow\) pt vô nghiệm

b/ ĐKXĐ: ...

\(2x+y+2\sqrt{2x+y}-3=0\)

\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)

\(\Leftrightarrow\sqrt{2x+y}=1\Rightarrow y=1-2x\)

Thay vào pt dưới:

\(x^2-2x\left(1-2x\right)=\left(1-2x\right)^2+2\)

\(\Leftrightarrow...\) bạn tự giải

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

20 tháng 5 2017

2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)

Áp dụng BĐT AM-GM ta có

\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự ta được

\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)

\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế theo vế của 3 BĐT cùng chiều ta được

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?