K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

a) Xét ΔABD và ΔACE có:

AB=ACAB=AC (do ΔABC cân đỉnh A)

ˆA^ : góc chung

AD=AE (giả thiết)

⇒ΔABD=ΔACE (c.g.c)

⇒DB=EC (hai cạnh tương ứng)

b) ΔABD=ΔACE⇒ˆB1=ˆC1 (hai góc tương ứng)

Mà ˆABC=ˆACB (do ΔABC cân đỉnh A)

⇒ˆABC−ˆB1=ˆACB−ˆC1

⇒ˆOBC=ˆOCB

⇒ΔOBC cân đỉnh O (đpcm)

14 tháng 1 2020

Sửa câu c:  DE // BE thành DE // BC nhé

A B C D E O

GT 

 △ABC cân tại A.                                       

 D \in AC; E \in AB  : AD = AE

 BD ∩ ED = { O }

KL

 a, DB = EC

 b, △OBC cân; △ODE cân

 c, DE // BE 

Bài giải:

a, Vì △ABC cân tại A (gt) => AB = AC

Xét △BAD và △CAE 

Có: AB = AC (cmt)

  BAC là góc chung

      AD = AE (gt)    

=> △BAD = △CAE (c.g.c)

=> DB = CE (2 cạnh tương ứng)

b, Vì △BAD = △CAE (cmt)

=> ABD = ACE (2 góc tương ứng) và ADB = CEA (2 góc tương ứng)

Ta có: CEA + CEB = 180o (2 góc kề bù)

ADB + BDC = 180o (2 góc kề bù)

Mà ADB = CEA (cmt)

=> CEB = BDC 

Lại có: AB = AE + EB

AC = AD + DC

Mà AB = AC (gt) ; AD = AE (gt)

=> EB = DC

Xét △BOE và △COD

Có: OBE = OCD (cmt)

         BE = CD (cmt)

      BEO = CDO (cmt)

=> △BOE = △COD (g.c.g)

=> OB = OC (2 cạnh tương ứng) và OE = OD (2 cạnh tương ứng)

Xét △OED có: OE = OD (cmt) => △OED cân tại O

Xét △OBC có: OB = OC (cmt) => △OBC cân tại O

c, Xét △AOD có: AE = AD (gt) => △AOD cân tại A => AED = (180o - EAD) : 2    (1)

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2                                               (2)

Từ (1) và (2) => AED = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> ED // BC (dhnb)

8 tháng 2 2020

ok thanks

17 tháng 2 2020

ABCEDO

a) Xét △ABD và △ACE có:

           AB = AC (gt)

           \(\widehat{A}\) chung

           AD = AE (gt)

\(\Rightarrow\)△ABD = △ACE (c.g.c)

\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)

b) Ta có :△ABD = △ACE

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)  (cặp góc tương ứng)

Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)

\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\)△OBC cân tại đỉnh O

\(\Rightarrow\)OB = OC

Ta có: DB = EC (cmt)

           OB = OC

\(\Rightarrow\)DB - OB = EC - OC

\(\Rightarrow\)OE = OD

\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)

c) △OBC cân tại đỉnh O

\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)

    △ODE cân tại đỉnh O

\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)

Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)

\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)

Vì 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\)DE // BC (ĐPCM)

2 tháng 3 2022

đúng đúng haha

18 tháng 4 2018

 

a: Xét ΔADB và ΔAEC có

AD=AE
góc BAD chung

AB=AC

Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

EC=DB

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên DE//BC

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek