K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

1.

Đồ thị hàm số:

2. 

Phương trình hoành độ giao điểm:

\(\dfrac{x^2}{4}=\dfrac{-x}{2}+2\)

\(\Leftrightarrow\dfrac{x^2}{4}+\dfrac{x}{2}-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

\(x=2\Rightarrow y=1\Rightarrow\left(2;1\right)\)

\(x=-4\Rightarrow y=4\Rightarrow\left(-4;4\right)\)

3.

Phương trình tiếp tuyến của \(\left(P\right)\) có dạng \(y=ax+b\left(d'\right)\)

Vì \(\left(d'\right)//\left(d\right)\Rightarrow-\dfrac{1}{2}=a;b\ne2\Rightarrow y=-\dfrac{1}{2}x+b\left(d'\right)\)

Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\)

\(-\dfrac{1}{2}x+b=\dfrac{x^2}{4}\Leftrightarrow\dfrac{1}{4}x^2+\dfrac{1}{2}x-b=0\left(1\right)\)

\(\Delta'=\dfrac{1}{4}+b=0\Leftrightarrow b=-\dfrac{1}{4}\)

\(\Rightarrow y=-\dfrac{1}{2}x-\dfrac{1}{4}\left(d'\right)\)

\(\left(1\right)\Leftrightarrow\dfrac{1}{4}x^2+\dfrac{1}{2}x+\dfrac{1}{4}=0\Leftrightarrow x=-1\Rightarrow y=\dfrac{1}{4}\)

\(\Rightarrow\left(-1;\dfrac{1}{4}\right)\)

22 tháng 7 2016

a/ Tọa độ giao điểm của (P) và (d) là:

\(\frac{x^2}{4}=-\frac{x}{2}+2\Rightarrow x^2=-2x+8\Rightarrow x^2+2x-8=0\Rightarrow\orbr{\begin{cases}x=-4\Rightarrow y=4\\x=2\Rightarrow y=1\end{cases}}\)

                                       Vậy có 2 giao điểm \(\orbr{\begin{cases}A\left(-4;4\right)\\A\left(2;1\right)\end{cases}}\)

22 tháng 7 2016

Giúp mình câu b luôn đi bạn :))

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{1}{4}x^2+\dfrac{1}{2}x-2=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-8=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-4;2\right\}\\y\in\left\{4;1\right\}\end{matrix}\right.\)

27 tháng 5 2018

Bài 1:

phần a tự vẽ được rồi nhỉ.

b, Gọi pt đường thẳng AB là y=ax+b

-Thay hoành độ điểm A vào (P) ta được y=1

thay x=-1, y=1 vào ta có: -a+b=1(1)

-Thay hoành độ điểm B vào (P) ta được y=4

thay x=2, y=4 vào ta có: 2a+b=4(2)

Từ (1) và(2) ta có hpt:\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

⇒Pt đường thẳng AB là y=x+2

12 tháng 6 2017

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

12 tháng 6 2017

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>

3 tháng 6 2021

a) pt hoành độ giao điểm \(x^2+4x+4=0\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)

\(\Rightarrow y=-\left(-2\right)^2=-4\Rightarrow\) tọa độ giao điểm là \(\left(-2;-4\right)\)

b) Vì \((d)\parallel (d')\Rightarrow \) \(\left\{{}\begin{matrix}a=4\\b\ne4\end{matrix}\right.\Rightarrow y=4x+b\)

Vì (d') cắt (P) tại điểm  có hoành độ là -1 \(y=-\left(-1\right)^2=-1\)

\(\Rightarrow\) điểm đó có tọa độ là \(\left(-1;-1\right)\)

\(\Rightarrow-1=-4+b\Rightarrow b=3\Rightarrow y=4x+3\)

Bạn tham khảo hình :

undefinedundefinedundefined

30 tháng 5 2021

a)Tự vẽ

b) Xét pt hoành độ gđ của (P) và (d) có:

\(\dfrac{3}{2}x^2=x+\dfrac{1}{2}\)

\(\Leftrightarrow3x^2-2x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\Rightarrow y=\dfrac{3}{2}.\left(-\dfrac{1}{3}\right)^2=\dfrac{1}{6}\\x=1\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy gđ của (d) và (P) là \(\left(-\dfrac{1}{3};\dfrac{1}{6}\right),\left(1;\dfrac{3}{2}\right)\)

c) Gọi đt cần tìm có dạng (d') \(y=ax+b\) (a2+b2>0)

Gọi A(-4;y1) và B(2;y2) là hai giao điểm của (P) và (d')

\(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=24\\y_2=6\end{matrix}\right.\) 

\(\Rightarrow A\left(-4;24\right),B\left(2;6\right)\) \(\in\left(d'\right)\)

\(\Rightarrow\left\{{}\begin{matrix}24=-4a+b\\6=2a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=12\end{matrix}\right.\) (thỏa)

Vậy (d'): y=-3x+12