Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra
\(A=\frac{\sqrt{x}-6}{\sqrt{x}+1}=\frac{\sqrt{x}+1-7}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Để A nguyên thì \(\frac{7}{\sqrt{x}+1}\) nguyên hay \(\sqrt{x}+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau:
\(\sqrt{x}+1\) | -7 | -1 | 1 | 7 |
\(\sqrt{x}\) | -8 (loại) | -2(loại) | 0 | 6 |
\(x\) | ___ | __ | 0 | 36 |
Vậy ....
B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
B = \(1+\frac{4}{\sqrt{x}-3}\)
để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)
=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên \(\sqrt{x}-3\in\left(1;4\right)\)
\(\sqrt{x}\)\(\in\)(4;7)
x \(\in\)(16;49)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Để A có giá trị là một số nguyên thì:
\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)
Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
Vậy ....
Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A có giá trị là một số nguyên khi:
\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do đó:
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\) ( loại )
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)
Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)