Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ����ABCD là hình thoi nên ��⊥��AC⊥BD tại trung điểm của mỗi đường nên ��BD là trung trực của ��AC
Suy ra ��=��,��=��GA=GC,HA=HC (1)(1)
Và ��AC là trung trực của ��BD suy ra ��=��,��=��AG=AH,CG=CH (2)(2)
Từ (1),(2)(1),(2) suy ra ��=��=��=��AG=GC=CH=HA nên ����AGCH là hình thoi.
Ta có ����ABCD là hình thoi nên ��⊥��AC⊥BD tại trung điểm của mỗi đường nên ��BD là trung trực của ��AC
Suy ra ��=��,��=��GA=GC,HA=HC (1)(1)
Và ��AC là trung trực của ��BD suy ra ��=��,��=��AG=AH,CG=CH (2)(2)
Từ (1),(2)(1),(2) suy ra ��=��=��=��AG=GC=CH=HA nên ����AGCH là hình thoi.
a) AE=FC
AB=CD
=> DF=EB
AD=BC
góc ADF=EBC
=> tam giác ADF = CBE ( c-g-c)
=> AF=EC
Xét tam giác ABD:
E là trung điểm AB (gt).
H là trung điểm AD (gt).
\(\Rightarrow\) EH là đường trung bình.
\(\Rightarrow\) EH // BD; EH = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (1)
Xét tam giác CBD:
F là trung điểm BC (gt).
G là trung điểm CD (gt).
\(\Rightarrow\) FG là đường trung bình.
\(\Rightarrow\) FG // BD; FG = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (2)
Xét tamgiacs ACD:
H là trung điểm AD (gt).
G là trung điểm CD (gt).
\(\Rightarrow\) HG là đường trung bình.
\(\Rightarrow\) HG // AC (Tính chất đường trung bình).
Mà AC \(\perp\) BD (Tứ giác ABCD là hình thoi).
\(\Rightarrow\) HG \(\perp\) BD.
Lại có: EH // BD (cmt).
\(\Rightarrow\) EH \(\perp\) HG.
Từ (1) và (2) \(\Rightarrow\) EH // FG; EH = FG.
\(\Rightarrow\) Tứ giác EFGH là hình bình hành (dhnb).
Mà EH \(\perp\) HG (cmt).
\(\Rightarrow\) Tứ giác EFGH là hình chữ nhật (dhnb).
b) Tứ giác ABCD là hình thoi (gt).
\(\Rightarrow\) AC cắt BD tại trung điểm mỗi đường (Tính chất hình thoi).
Mà I là giao điểm của AC và BD (gt.)
\(\Rightarrow\) I là trung điểm của AC và BD.
\(\Rightarrow\left\{{}\begin{matrix}AI=\dfrac{1}{2}AC=\dfrac{1}{2}.8=4\left(cm\right).\\IB=\dfrac{1}{2}BD=\dfrac{1}{2}.10=5\left(cm\right).\end{matrix}\right.\)
Xét tam giác ABI: AI \(\perp\) BI (AC \(\perp\) BD).
\(\Rightarrow\) Tam giác ABI vuông tại I.
\(\Rightarrow S_{\Delta ABI}=\dfrac{1}{2}AI.IB=\dfrac{1}{2}.4.5=10\left(cm^2\right).\)
\(\perp\)
Câu 15:
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình
=>EH//BD và EH=BD/2(1)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình
=>FG//BD và FG=BD/2(2)
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AC
=>EF⊥BD
=>EF⊥EH
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
mà EF⊥EH
nên EHGF là hình chữ nhật
b: AI=AC/2=8/2=4(cm)
BI=BD/2=10/2=5(cm)
\(S_{AIB}=\dfrac{AI\cdot BI}{2}=\dfrac{5\cdot4}{2}=10\left(cm^2\right)\)
ABCD là hình thoi
=>AC vuông góc BD tại trung điểm của mỗi đường và BD là phân giác của góc ABC
Xét ΔADF và ΔABE có
AD=AB
\(\widehat{ADF}=\widehat{ABE}\)
DF=BE
Do đó: ΔADF=ΔABE
=>AF=AE và \(\widehat{AFD}=\widehat{AEB}\)
Xét ΔHFD và ΔGEB có
\(\widehat{HFD}=\widehat{GEB};\widehat{FDH}=\widehat{EBG}\left(=\widehat{ABD}\right)\)
DF=BE
Do đó: ΔHFD=ΔGEB
=>HF=GE và DH=BG
AH+HF=AF
AG+GE=AE
mà HF=GE và AF=AE
nên AH=AG
Xét ΔCDH và ΔABG có
CD=AB
\(\widehat{CDH}=\widehat{ABG}\)
DH=BG
Do đó: ΔCDH=ΔABG
=>CH=AG
Xét ΔADH và ΔCBG có
AD=CB
\(\widehat{ADH}=\widehat{CBG}\)
DH=BG
Do đó: ΔADH=ΔCBG
=>AH=CG
Xét tứ giác AGCH có
AG=CH
AH=CG
Do đó: AGCH là hình bình hành
mà AC vuông góc GH
nên AGCH là hình thoi