Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\overrightarrow{BC}=\left(1;3\right)\Rightarrow\) đường thẳng BC nhận (3;-1) là 1 vtpt
Phương trình tổng quát BC qua B(-1;0) có dạng:
\(3\left(x+1\right)-1\left(y-0\right)=0\Leftrightarrow3x-y+3=0\)
Pt AB và AC em tự viết tương tự
b.
Do M là trung điểm BC, theo công thức trung điểm \(\Rightarrow M\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(-\dfrac{5}{2};\dfrac{1}{2}\right)\Rightarrow\) đường thẳng AM nhận (1;5) là 1 vtpt
Phương trình AM qua A(2;1) có dạng:
\(1\left(x-2\right)+5\left(y-1\right)=0\Leftrightarrow x+5y-7=0\)
c.
Do AH vuông góc BC nên AH nhận (1;3) là 1 vtpt
Phương trình AH qua A có dạng:
\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)
d.
Gọi I là trung điểm AB \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)
\(\overrightarrow{BA}=\left(3;1\right)\)
Do trung trực AB vuông góc và đi qua trung điểm AB nên đi qua I và nhận (3;1) là 1 vtpt
Phương trình:
\(3\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x+y-2=0\)
a: vecto AB=(2;1)
=>VTPT là (-1;2)
Phương trình AB là:
-1(x-2)+2(y-0)=0
=>-x+2y+2=0
vecto AC=(-1;2)
=>VTPT là (2;1)
PT AC là:
2(x-2)+1(y-0)=0
=>2x+y-4=0
vecto BC=(-3;1)
=>VTPT là (1;3)
Phương trình BC là:
1(x-4)+3(y-1)=0
=>x+3y-7=0
b: vecto BC=(-3;1)
=>AH có VTPT là (-3;1)
Phương trình AH là;
-3(x-2)+1(y-0)=0
=>-3x+6+y=0
c: Tọa độ I là trung điểm của AC là;
x=(2+1)/2=1,5 và y=(0+2)/2=1
vecto AC=(-1;2)
=>(d) có VTPT là (-1;2) và đi qua I(1,5;1)
Phương trình trung trực của AC là;
-1(x-1,5)+2(y-1)=0
=>-x+1,5+2y-2=0
=>-x+2y-0,5=0
Bài 1:
\(\overrightarrow{IJ}=\left(-2;6\right)=-2\left(1;-3\right)\)
Gọi M là trung điểm IJ \(\Rightarrow M\left(3;2\right)\)
Trung trực đi qua M và vuông góc IJ nên nhận \(\left(1;-3\right)\) là 1 vtpt
Phương trình:
\(1\left(x-3\right)-3\left(y-2\right)=0\Leftrightarrow x-3y+3=0\)
Bài 2:
\(\overrightarrow{AB}=\left(-4;1\right)=-1\left(4;-1\right)\) ; \(\overrightarrow{BC}=\left(2;1\right)\)
Đường cao AH vuông góc BC nên nhận (2;1) là 1 vtpt
Phương trình AH:
\(2\left(x-1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-3=0\)
Tương tự ta có pt CK:
\(4\left(x+1\right)-1\left(y-3\right)=0\Leftrightarrow4x-y+7=0\)
Trực tâm I là giao điểm AH và CK nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}2x+y-3=0\\4x-y+7=0\end{matrix}\right.\) \(\Rightarrow I\left(-\frac{2}{3};\frac{13}{3}\right)\)
c/ M là trung điểm AC \(\Rightarrow M\left(0;2\right)\Rightarrow\overrightarrow{BM}=\left(3;0\right)=3\left(1;0\right)\)
Đường thẳng BM nhận (0;1) là 1 vtpt
Phương trình BM: \(0\left(x-0\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
d/ \(\overrightarrow{AC}=\left(-2;2\right)=-2\left(1;-1\right)\)
TH1: Đường thẳng qua B và cách đều AC là đường thẳng BM (đã viết pt ở trên)
Th2: đường thẳng qua B và song song AC, nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình: \(1\left(x+3\right)+1\left(y-2\right)=0\Leftrightarrow x+y+1=0\)
a: vecto AB=(2;2)=(1;1)
=>VTPT là (-1;1)
Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)
Phương trình tổng quát của AB là:
-1(x+1)+1(y-0)=0
=>-x-1+y=0
=>x-y+1=0
b: vecto BC=(2;0)
Vì AH vuông góc BC
nên AH nhận vecto BC làm vtpt và đi qua A
=>AH: 2(x+1)+0(y-0)=0
=>2x+2=0
=>x=-1
c: Tọa độ M la:
x=(-1+3)/2=2/2=1 và y=(0+2)/2=1
B(1;2); M(1;1)
vecto BM=(0;-1)
=>VTPT là (1;0)
Phương trình BM là:
1(x-1)+0(y-2)=0
=>x-1=0
=>x=1
Đáp án: B
Ta có A(-1;3), B(1;0) và C(2;-1)
Phương trình đường thẳng BC có dạng: (x - 1) + (y - 0) = 0 ⇔ x + y - 1 = 0
Độ dài đường cao của tam giác ABC kẻ từ điểm C chính bằng khoảng cách từ điểm A đến đường thẳng BC:
a, Tam giác ABC có trọng tâm \(G=\left(3;\dfrac{1}{3}\right)\)
Phương trình trung tuyến AM:
\(\dfrac{x-5}{3-5}=\dfrac{y+1}{\dfrac{1}{3}+1}\Leftrightarrow2x+3y-7=0\)
b, Phương trình đường thẳng BC là: \(x-2y=0\)
Phương trình đường cao AH vuông góc với BC nên có phương trình: \(2x+y+m=0\left(m\in R\right)\)
Mà \(A=\left(5;-1\right)\in AH\Rightarrow2.5-1+m=0\Leftrightarrow m=-9\)
\(\Rightarrow AH:2x+y-9=0\)