K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A={0;1;2;3}

b: B={-16;-13;-10;-7;-4;-1;2;5;8}

c: C={-9;-8;-7;...;7;8;9}

d: \(D=\varnothing\)

5 tháng 4 2017

a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}

b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}

c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

A)

\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)

\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)

\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)

\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)

Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

B)

Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)

\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)

\(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)

\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)

Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)

C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)

Ta thấy: \(x=a^2\leq 400\)

\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)

\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)

\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)

\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)

Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)

+)

2 tháng 4 2017

a) A = {0, 3, 6, 9, 12, 15, 18}.

b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}.

c) Tự thực hiện

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.

Mệnh đề A sai.

b)

\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.

c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.

d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)

\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)

\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$

\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)

Mệnh đề đúng.

29 tháng 8 2018

còn bài 2 giải sao thầy

Câu 2: 

a: A={x∈N|x=k(k+1)}

b: B={1/x|x∈N, x=k2}

1.) liệt kê các tập hợp sau : a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\) b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\) c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\) B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0 d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\) e.) E =...
Đọc tiếp

1.) liệt kê các tập hợp sau :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)

b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)

B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0

d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)

e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)

2.) chỉ ra tính chất đặc trưng :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)

b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)

3.) Trong các tập hợp sau , tập hợp nào là con tập nào :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)

b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)

0