Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)
= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)
= \(\sqrt{15}.0\)
= 0
b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)
= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)
= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)
= \(\sqrt{5}.\sqrt{5}\)
= 5
c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)
= \(\sqrt{5}+\sqrt{3}\)
d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)
= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)
= \(2\sqrt{5}.4\)
= \(8\sqrt{5}\)
e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)
= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)
= \(\sqrt{3}.\frac{20}{3}\)
= \(\frac{20\sqrt{3}}{3}\)
a, √320+√160−2√115320+160−2115
b, (1√5−√3+1√5+√3).√5(15−3+15+3).5
c, (5√3+3√5):√15(53+35):15
d, (2+√5)2−(2+√5)2(2+5)2−(2+5)2
e, 13√48+3√75−√27−10√1131348+375−27−10113
a/ Bạn ghi nhầm đề rồi
c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)
f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)
g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)
\(=2007\)
a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=5-3-\sqrt{5}\)
\(=2-\sqrt{5}\)
b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)
\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)
\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)
\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))
\(=\sqrt{3}+\frac{8}{3}\)
d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)
\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)
\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)
\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)
\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)
a) \(\left(\sqrt{8}+\sqrt{72}-\sqrt{2}\right).\sqrt{2}\)
\(=\left(2\sqrt{2}+6\sqrt{2}-\sqrt{2}\right).\sqrt{2}\)
\(=7\sqrt{2}.\sqrt{2}=7.2=14\)
b) \(\left(\sqrt{5}+\sqrt{2}+1\right)\left(\sqrt{5}-1\right)\)
\(=5-\sqrt{5}+\sqrt{10}-\sqrt{2}+\sqrt{5}-1\)
\(=4+\sqrt{10}-\sqrt{2}\)
c) \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{4+\sqrt{7}}\right)^2-2\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}+\left(\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(4+\sqrt{7}\right)-6+\left(4-\sqrt{7}\right)\)
\(=4+\sqrt{7}-6+4-\sqrt{7}=2\)
d) \(\left(\sqrt{2}+1+\sqrt{3}\right).\left(\sqrt{2}+1-\sqrt{3}\right)\)
\(=\left(\sqrt{2}+1\right)^2-3=2+2\sqrt{2}+1-3=2\sqrt{2}\)
e) \(\left(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\right).\sqrt{2}\)
\(=3+1-2=2\)(nhân vào)
f) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
\(=\left(\sqrt{75}+\sqrt{45}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)(chia đa tức cho đơn thức)
có sai xót mong m.n bỏ qa cho ♥
b, \(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}=2-\sqrt{5}-\sqrt[]{5}\)
\(=2-2\sqrt{5}=2\left(1-\sqrt{5}\right)\)
c, \(\frac{1}{1+\sqrt{2}}-\sqrt{2}=\frac{1}{1+\sqrt{2}}-\frac{\left(1+\sqrt{2}\right)\sqrt{2}}{1+\sqrt{2}}\)
\(=\frac{1-\sqrt[]{2}-2}{1+\sqrt{2}}=\frac{-1-\sqrt{2}}{1+\sqrt{2}}=-1\)