Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
1/ tính :
a/ A = 341 . 67 + 341 . 16 + 659 . 83
A = 341 . ( 67 + 16 ) + 659 . 83
A = 341 . 83 + 659 . 83
A = 83 . ( 341 + 659 )
A = 83 . 1000
A = 83 000
b/ B = 42 . 53 + 47 . 156 - 47 . 114
B = 42 . 53 + 47 . ( 156 - 114 )
B = 42 . 53 + 47 . 42
B = 42 . ( 53 + 47 )
B = 42 . 100
B = 4 200
2/ thu gọn tổng :
A = 3 + 32 + 33 + ... + 3100
3A = 3^2 + 3^3 + 3^4 + ...+ 3^101
3A - A = ( 3^2 + 3^3 + 3^4 + ...+ 3^101 ) - ( 3 + 32 + 33 + ... + 3100 )
2A = 3^101 - 3
A = 3^101 - 3 / 2
Bài 1:
\(A=341.67+341.16+659.83.\)
\(=341.\left(67+16\right)+659.83\)
\(=341.83+659.83\)
\(=83.\left(341+659\right)\)
\(=83.1000=83000\)
\(B=42.53+47.156-47.114\)
\(=42.53+47.\left(156-114\right)\)
\(=42.53+47.42\)
\(=42.\left(47+53\right)\)
\(=42.100=4200\)
Bài 2:
\(A=3+3^2+3^3+3^4+....+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{101}\)
\(2A=3A-A=\left(3^2+3^3+3^4+3^5+....+3^{101}\right)-\left(3+3^2+3^3+3^4+....+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
Bài 3:
\(S=1+2+3+4+...+2018\)
\(=\frac{\left[1+2018\right].\left[\left(2018-1\right)+1\right]}{2}\)
\(=\frac{2019.2018}{2}=2037171\)
\(P=1+3+5+7+...+2017\)
\(=\frac{\left[2017+1\right].\left[\left(2017-1\right):2+1\right]}{2}\)
\(=\frac{2018.1009}{2}\)
\(=1018081\)
Bài 4:
\(\text{Vì ab = 0 }\)\(\Rightarrow\)\(a=0\)\(\text{hoặc}\)\(b=0\)
\(\text{Th1 : ( a = 0)}\)
\(a+4b=16\)
\(0+4b=16\)
\(4b=16\Leftrightarrow b=4\)
\(\text{Th2: ( b = 0)}\)
\(a+4b=16\)
\(a+4.0=16\)
\(a+0=16\Leftrightarrow a=16\)
\(\text{Vậy :}\)\(a;b\in\left\{0;4\right\};\left\{16;0\right\}\)
Bài 5:
\(A=\frac{10^2+11^2+12^2}{13^2+14^2}=\frac{365}{365}=1\)
\(B=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(12.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{12^2.2^{32}}{11.2^{13}.4^{11}-16^9}=....=2\)
\(S=6^2\left(1^2+2^2+3^2+...+10^2\right)=36.385=13860\)
a ko là scp vì a có tc =7
b ko là scp vì b có tc =8
e có là scp vì e chia hết cho 2 và 4
g có là scp vì g chia hết cho 3 và 9
b2
vì a chia hết cho 2 nhưng ko chia hết cho a nên a ko là scp
b3
dài lắm bạn tự tìm nha.mk chỉ nhớ được là :1,4,9,16,25,36,49,64,81,100,121,144,..
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Rightarrow S=2^{2018}-1\)
Vậy \(S=2^{2018}-1\)
\(S=\frac{1+2+2^2+2^3+...+2^{2017}}{1-2^{2018}}\) (1)
đặt \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^{2018}\right)-1\)
\(\Rightarrow A=2^{2018}+2-1=2^{2018}+1\) (2)
\(\left(1\right)\left(2\right)\Rightarrow S=\frac{2^{2018}+1}{1-2^{2018}}\)
làm đến đây thì............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................tớ ko bt lm nx
2S=2.(22 + 23 + 24+ ... + 22017 + 22018)
2S=23 + 24+ ... + 22017 + 22018+22019
S=23 + 24+ ... + 22017 + 22018+22019-22 + 23 + 24+ ... + 22017 + 22018
S=22019-22
S=2^2+2^3+2^4+....+2^2017+2^2018
2S=2^3+2^4+....+2^2018+2^2019
2S-S=(2^3+2^4+...+2^2018+2^2019)-(2^2+2^3+2^4+...+2^2017+2^2018)
S=2^2019-2^2