\(\left\{315-\left[(60-41)^2-361\right].4217\right\}+2885\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

A=(a-b+c)-(b-c-d)+(c-d+a)

A=a-b+c-b+c+d+c-d+a

A=2a-2b-3c

B=( a + b - c ) + ( b + c - a ) - ( a - c )

B=a + b - c + b + c - a - a + c

B=2b + c - a


8 tháng 1 2019

C = - ( 4a + 5b + c) - ( 5b + 3c )

C = -4a - 5b - c - 5b -3c

C= -4a - 10b - 4c

D= ( a - 3b + c) - ( 2a -b +c)

D= a - 3b +c - 2a + b -c

D= a - 2b

25 tháng 1 2017

\(\text{a) A = | -x + 8| - 21}\)
Vì | -x + 8| \(\le\) 0 ( với mọi x )
=> A = | -x + 8| - 21\(\ge\) -21
=> Amax = -21 khi | -x + 8| = 0 => -x + 8 = 0 => -x = -8 => x = 8
Vậy với Amin = -21 thì x = 8
b) \(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(\left\{\begin{matrix}\left|-x-17\right|\ge0\\\left|y-36\right|\ge0\end{matrix}\right.\)=> \(\left|-x-17\right|+\left|y-36\right|\ge0\)
=> \(B=\left|-x-17\right|+\left|y-36\right|+12\le12\)
=> Bmin = 12 khi \(\left|-x-17\right|+\left|y-36\right|=0\)
=> \(\left\{\begin{matrix}\left|-x-17\right|=0\\\left|y-36\right|=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x-17=0\\y-36=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x=17\\y=36\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
Vậy Bmin = 12 khi \(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
c) \(C=-\left|2x-8\right|-35\)
\(-\left|2x-8\right|\ge0\)
=> \(C=-\left|2x-8\right|-35\ge-35\)
=> Cmin = -35 khi \(-\left|2x-8\right|=0\)=> \(-2x-8=0\)=>\(-2x=8\)=> \(x=4\)
Vậy Cmin = -35 khi x = 4
d) \(D=3\left(3x-12\right)^2-37\)
\(\left(3x-12\right)^2\ge0\)
=> \(3\left(3x-12\right)^2\ge0\)
=> \(D=3\left(3x-12\right)^2-37\ge-37\)
=> Dmin = -37 khi \(3\left(3x-12\right)^2=0\) => \(\left(3x-12\right)^2=0\)=> \(3x-12=0\)=> \(3x=12\)=>\(x=4\)
Vậy Dmin = -37 khi x = 4

a, A=|-x+8|-21

Vì |-x+8|>hoặc =0 với mọi x

suy ra |-x+8|-21>hoặc = -21

Dấu = xảy ra khi và chỉ khi |-x+8|=0

Khi và chỉ khi -x+8=0

Khi và chỉ khi-x=-8

khi và chỉ khi x =8

Vậy GTNN của A là -21 tại x=8

8 tháng 11 2017

a) Vì a \(⋮\) a => \(2⋮a\)

\(\Rightarrow a\inƯ\left(2\right)\Rightarrow a\in\left\{\pm1;\pm2\right\}\)

b) Ta có: a + 5 = (a+1) +4

Do a+ 1 \(⋮a+1\Rightarrow4⋮a+1\)

\(\Rightarrow a+1\inƯ\left(4\right)\)

\(\Rightarrow a+1\left\{\pm1;\pm2;\pm4\right\}\)

Với x + 1 = 1 thì x = 0

Với x + 1 = -1 thì x = -2

...

c) Ta có: \(a^2+3=a\left(a+1\right)-a-1+4\)

\(=a\left(a+1\right)-\left(a+1\right)+4=\left(a-1\right)\left(a+1\right)+4\)

Do \(\left(a-1\right)\left(a+1\right)⋮\left(a+1\right)\Rightarrow4⋮\left(a+1\right)\)

\(\Rightarrow a+1\inƯ\left(4\right)\)

...

d) Làm như trên và loại bớt trường hợp bằng cách lí luận 2a + 1 luôn lẻ.

e) Tương tự.

8 tháng 11 2017

câu d thì làm như câu nào vậy

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

27 tháng 6 2018

1.

(a - b) - (b + c) + (c - a) - (a - b - c)

= a - b - b - c + c - a - a + b + c

= (a - a) + (b - b) + (c - c) - (a + b - c)

=0 + 0 + 0 - (a + b - c)

= - (a + b - c)    (đpcm)

2. chju

27 tháng 6 2018

P = a . ( b - a ) - b . ( a - c ) - bc

P = ab - a- ba + bc - bc

P = ab - a2 - ba

P = a . ( b - a - b )

P = a . ( - a ) mà a khác 0 => P có giá trị âm

Vậy biểu thức P luôn âm với a khác 0

11 tháng 11 2015

a. VT:(x-y)-(x-z)

= x-y-x+z

= z-y

VP:(z+x)-(y+x)

=z+x-y-x

=z-y

=> VT=VP => đpcm.

b. VT:(x-y+z)-(y+z-x)-(x-y)

= x-y+z-y-z+x-x+y

= x-y

VP:(z-y)-(z-x)

= z-y-z+x

= x-y

=> VT=VP => đpcm.

c. VT: a(b+c)-b(a-c)

=ab+ac-ab+bc

= ac+bc

VP: (a+b)c

= ac+bc

=> VT=VP => đpcm.

d. VT: a(b-c)-a(b+d)

= ab-ac-ab-ad

= -ac-ad

VP: -a(c+d)

= -ac-ad 

=> VT=VP => đpcm

tương tự...

giả sử điều phải chứng minh là đúng thì:

\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)

do đó điều phải chứng minh là đúng

12 tháng 4 2018

Hay quá ! Very good !banhqua

15 tháng 2 2020

\(A=\left|-x+8\right|-21\)

\(A=\left|-x+8\right|-21\ge-21\)

\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)

\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)

\(C=-\left|2x+8\right|-35\)

\(C=-\left|2x+8\right|-35\le-35\)

\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)

15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

31 tháng 5 2017

Áp đụng tính chất dãy tỷ số bằng nhau ta được

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Ta lại có: 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

31 tháng 5 2017

Ta có:

+) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)

+) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(2)

Từ (1)(2)

\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)