Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
Bài 1
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^{2^2}-12x^2y^3\)
\(=(15x^2y^3-12x^2y^3)+(7x^2-12x^2)+(-8x^3y^2+11x^3y^2)\)
\(=3x^2y^3-5x^2+3x^3y^2\)
Bậc của hệ số cao nhất là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(=(3x^5y-\frac{1}{2}x^5y)+(\frac{1}{3}xy^4+2xy^4)+(\frac{3}{4}x^2y^3-x^2y^3)\)
\(=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Bậc của hệ số cao nhất là 6
Bài 2
\(a.A=5xy-y^2-2xy+4xy+3x-2y\)
\(=(5xy-2xy+4xy)-y^2+3x-2y\)
\(=7xy-y^2+3x-2y\)
\(b.B=\frac{1}{2}ab^2-\frac{1}{8}ab^2+\frac{3}{4}a^2b-\frac{3}{8}a^2b-\frac{1}{2}ab^2\)
\(=(\frac{1}{2}ab^2-\frac{1}{8}ab^2-\frac{1}{2}ab^2)+(\frac{3}{4}a^2b-\frac{3}{8}a^2b)\)
\(=-\frac{1}{8}ab^2+\frac{3}{8}a^2b\)
\(c.C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(=(2a^2b+5a^2b)+(-8b^2-3b^2)+(5c^2+4c^2)\)
\(=7a^2b-11b^2+9c^2\)
Bài 3
a. Thay x = 2 và y = 9 vào biểu thức A có
\(A=2.2^2-\frac{1}{3}.9\)
\(=8-3=3\)
Vậy giá trị biểu thức A = 3 khi x = 2 và y = 9
b.Thay a = -2 và b = -1/3 vào biểu thức B có
\(B=\frac{1}{2}.(-2)^2-3.(-\frac{1}{3})^2\)
\(=\frac{1}{2}.4-3.\frac{1}{9}\)
\(=2-3=-1\)
Vậy giá trị biểu thức B = -1 khi x = -2 và y = -1/3
c.Thay x = -1/2 và y = 2/3 vào biểu thức P có
\(P=2.(\frac{-1}{2})^2+3.\frac{-1}{2}.\frac{2}{3}+(\frac{2}{3})^2\)
\(=2.\frac{1}{4}-1+\frac{4}{9}\)
\(=\frac{1}{2}-\frac{5}{9}=\frac{-1}{18}\)
Vậy giá trị biểu thức P = -1/18 khi x = -1/2 và y = 2/3
d. Thay a = -1/3 và b = -1/6 vào biểu thức có
\(12.\frac{-1}{3}.(\frac{-1}{6})^2\)
\(=-4.\frac{1}{36}=\frac{-1}{9}\)
Vậy giá trị biểu thức bằng -1/9 khi a = -1/3 và b = -1/6
e.Thay x = 2 và y = 1/4 vào biểu thức có
\((\frac{-1}{2}.2.\frac{1^2}{4^2}).(\frac{2}{3}.2^3)\)
\(=-\frac{1}{16}.\frac{16}{3}=\frac{-1}{3}\)
Vậy giá trị biểu thức bằng -1/3 khi x = 2 và y = 1/4
Bài 4
\(a.(\frac{-1}{2}a^2)(-24a).(4m-n)\)
\(=\frac{-1}{2}.(-24).a^2.a.(4m-n)\)
\(=12a^3.(4m-n)\)
\(=48a^3m-12a^3n\)
\(b.(x^2)(x^3.2).(-1).(-3a)\)
\(=2.(-1).(-3).x^2.x^3.a\)
\(=6x^5a\)
Bài 5
\(a.\frac{1}{2}x^2(2x^2y^2z).(\frac{-1}{3}x^2y^3)\)
\(=\frac{1}{2}.2.(\frac{-1}{3}).x^2.x^2.x^2.y^2.y^3.z\)
\(=\frac{-1}{3}x^6y^5z\)
Bậc của đơn thức trên là 12
\(b.(-x^2y)^3.(\frac{1}{2}x^2y^3).(-2xy^2z)^2\)
\(=\frac{1}{2}.4.x^5.x^2.x^2.y^3.y^3.y^4.z^2\)
\(=2x^9y^{10}z^2\)
Bậc của đơn thức trên là 21
Bài 6
\(a.(-6x^3zy).(\frac{2}{3}yz)^2\)
\(=-6.\frac{4}{9}.x^3.y.y^2.z.z^2\)
\(=-\frac{8}{3}x^3y^3z^3\)
\(b.(xy-5x^2y^2+xy^2-xy^2)-(xy^2+3xy^2-9x^2y)\)
\(=-5x^2y^2+9x^2y-4xy^2+xy\)
Học tốt
a: 3x=2y
nên x/2=y/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{2-3}=\dfrac{1}{-1}=-1\)
Do đó: x=-2; y=-3
\(A=\left(-2\right)^3+12\cdot\left(-2\right)^2\cdot\left(-3\right)+48\cdot\left(-2\right)\cdot\left(-3\right)^2-64\cdot\left(-3\right)^3\)
\(=-8+12\cdot4\cdot\left(-3\right)-96\cdot9-64\cdot\left(-27\right)\)
\(=712\)
b: 6a=5b
nên a/5=b/6
Đặt a/5=b/6=k
=>a=5k; b=6k
\(B=\dfrac{2a-3b}{3b-2a}=-1\)
d: \(\left|x-2\right|+\left(y-1\right)^2=0\)
=>x-2=0 và y-1=0
=>x=2 và y=1
\(D=\left|2-2\right|+\dfrac{2-1}{2-1}=0+1=1\)