Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
Phần a vs phần b tính toán thông thường thôi mà bạn, vs 1 h/s lớp 7 thì ít nhất phải làm được chứ?? :((
a) \(x-\frac{4}{5}=\frac{7}{10}-\frac{3}{4}\)
\(\Leftrightarrow x-\frac{4}{5}=\frac{-1}{20}\)
\(\Leftrightarrow x=\frac{-1}{20}+\frac{4}{5}=\frac{15}{20}=\frac{3}{4}\)
b) \(2\frac{1}{3}-x=\frac{-5}{9}+2x\)
\(\Leftrightarrow2\frac{1}{3}-\frac{-5}{9}=2x+x\)
\(\Leftrightarrow3x=\frac{7}{3}+\frac{5}{9}\)
\(\Leftrightarrow3x=\frac{26}{9}\)
\(\Leftrightarrow x=\frac{26}{9}:3=\frac{26}{27}\)
d) .............................. ( Đề bài)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}\)\(-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(\Leftrightarrow-\frac{1}{x+3}=\frac{1}{2010}\)
\(\Leftrightarrow\frac{1}{-\left(x+3\right)}=\frac{1}{2010}\)\(\Leftrightarrow-\left(x+3\right)=2010\)
\(\Leftrightarrow-x-3=2010\) \(\Leftrightarrow-x=2010+3=2013\)
\(\Leftrightarrow x=-2013\)
Bạn tự kết luận nha!
c)
\(\frac{x+3}{2016}+\frac{x+2}{2017}=\frac{x+1}{2018}+\frac{x}{2019}\\ \Leftrightarrow\frac{x+3}{2016}+1+\frac{x+2}{2017}+1=\frac{x+1}{2018}+1+\frac{x}{2019}+1\\ \Leftrightarrow\frac{x+2019}{2016}+\frac{x+2019}{2017}-\frac{x+2019}{2018}-\frac{x+2019}{2019}=0\\ \Leftrightarrow\left(x+2019\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\\ \Rightarrow x-2019=0\\ \Rightarrow x=2019\)
\(a,\frac{-1}{2}+\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}.\)
\(\Rightarrow\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}-\frac{-1}{2}=\frac{-7}{6}\)
\(\Rightarrow x-3=\frac{-7}{6}\cdot\frac{-1}{2}=\frac{7}{12}\)
\(\Rightarrow x=\frac{7}{12}+3=3\frac{7}{12}\)
\(b.2,25+\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}\)
\(\Rightarrow\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}-2,25=\frac{1}{4}\)
\(\Rightarrow x-5=\frac{3}{2}:\frac{1}{4}=6\)
\(\Rightarrow x=6+5=11\)
\(c,\left(\frac{1}{3}-x\right)^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2=\left(-\frac{1}{2}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=\frac{1}{2}\\\frac{1}{3}-x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}\\x=\frac{1}{3}-\frac{-1}{2}=\frac{5}{6}\end{cases}}\)
\(d,\frac{3}{2}+\frac{x-1}{3}=1\)
\(\Rightarrow\frac{x-1}{3}=1-\frac{3}{2}=-\frac{1}{2}\)
\(\Rightarrow x-1=-\frac{1}{2}\cdot3=-\frac{3}{2}\)
\(\Rightarrow x=-\frac{3}{2}+1=\frac{1}{2}\)
\(e,-\frac{6}{8}+\frac{x}{12}=\frac{5}{6}\)
\(\Rightarrow\frac{x}{12}=\frac{5}{6}-\frac{-6}{8}=\frac{19}{12}\)
\(\Rightarrow x=19\)
\(g,\frac{1}{2}-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}\)
\(\Rightarrow-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}-\frac{1}{2}=-\frac{7}{6}\)
\(\Rightarrow x-2=\frac{-7}{6}:\frac{-1}{3}=\frac{7}{2}\)
\(\Rightarrow x=\frac{7}{2}+2=2\frac{7}{2}\)
\(h,\frac{5}{2}\left(x+1\right)-\frac{1}{2}=3\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}\left(x+1\right)=3\frac{1}{2}-\frac{1}{2}=3\)
\(\Rightarrow x+1=3:\frac{5}{2}=\frac{6}{5}\)
\(\Rightarrow x=\frac{6}{5}-1=\frac{1}{5}\)
\(k,\frac{x}{3}-\frac{1}{2}=-2\left(x+1\right)+3\)
\(\Rightarrow x\cdot\frac{1}{3}-\frac{1}{2}=-2x-2+3\)
\(\Rightarrow\frac{1}{3}x+2x=-2+3+\frac{1}{2}\)
\(\Rightarrow\frac{7}{3}x=\frac{3}{2}\Rightarrow x=\frac{3}{2}:\frac{7}{2}=\frac{3}{7}\)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow\)\(x+329=0\) (vì 1/327 + 1/326 + 1/325 + 1/324 + 1/5 khác 0 )
\(\Leftrightarrow\)\(x=-329\)
Bài 1 :
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)
\(\Rightarrow\)\(x+329=0\)
\(\Rightarrow\)\(x=-329\)
Vậy \(x=-329\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
Bài 1 :
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{1}{2018}\)
B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)
\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)
\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)
\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)
\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)
\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)
VẬY B=200