K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)

17 tháng 3 2022

1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\) \(=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)

 

12 tháng 4 2017

a) \(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{3}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\left(\dfrac{3}{12}+\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\left(\dfrac{3+1+4}{12}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\dfrac{2}{3}-\dfrac{2011}{2012}=\dfrac{298}{719}\cdot\dfrac{3}{2}-\dfrac{2011}{2012}=\dfrac{149.3}{719.1}-\dfrac{2011}{2012}=\dfrac{447}{719}-\dfrac{2011}{2012}=\dfrac{889364}{1446628}-\dfrac{1445909}{1446628}=\dfrac{889364-1445909}{1446628}=-\dfrac{556545}{1446628}.\)b)\(\dfrac{27\cdot18+27+103-120\cdot27}{15\cdot33+33\cdot12}=\dfrac{27\left(18+103-120\right)}{33\left(15+12\right)}=\dfrac{27\cdot1}{33\cdot27}=\dfrac{1\cdot1}{33\cdot1}=\dfrac{1}{33}\)

29 tháng 4 2017

\(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)

\(=\dfrac{298}{719}.0-\dfrac{2011}{2012}\)

\(=0-\dfrac{2011}{2012}\)

\(=-\dfrac{2011}{2012}\)

9 tháng 8 2017

\(=\dfrac{298}{719}.0-\dfrac{2011}{2012}\)

\(=0-\dfrac{2011}{2012}\)

\(=-\dfrac{2011}{2012}\)

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

25 tháng 3 2017

1) \(\dfrac{1}{2011}+\dfrac{2012.2010}{2011}-2012\)=\(\dfrac{1+2012.2010-2012.2011}{2011}\)

= \(\dfrac{1+2012.\left(2010-2011\right)}{2011}\)= \(\dfrac{1+2012.\left(-1\right)}{2011}\)

= \(\dfrac{-2011}{2011}=-1\)

6 tháng 7 2017

a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)

\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)

\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)

\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)

\(=5\dfrac{4}{23}.23\)

\(=\dfrac{119}{23}.23\)

\(=\dfrac{119}{23}\)

b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)

\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)

\(=\dfrac{-4}{6}+\dfrac{3}{2}\)

\(=\dfrac{-2}{3}+\dfrac{3}{2}\)

\(=\dfrac{-4}{6}+\dfrac{9}{6}\)

\(=\dfrac{5}{6}\)

c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)

\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)

\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)

\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)

\(=1-1\)

\(=0\)

d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)

(đợi đã, mình chưa tìm được hướng làm...)

6 tháng 7 2017

quy đồng lên

20 tháng 4 2018

\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)

\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)

\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)

\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)

\(2A=2+3+4+5+6+...+2012+2013+2014\)

\(2A=\dfrac{\left(2+2014\right).2013}{2}\)

\(A=\dfrac{2016.2013}{4}=504.2013\)

20 tháng 4 2018

\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)

\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)

\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)

\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)

\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)

\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)

\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)

\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)

a: \(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\)

\(=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{122}{8}\right)\)

\(=\dfrac{12}{7}\cdot\dfrac{35}{8}=5\cdot\dfrac{3}{2}=\dfrac{15}{2}\)

b: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}\)

\(=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)

c: \(=\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}\)

\(=\dfrac{35}{6}:\dfrac{-31}{30}-\dfrac{11}{31}\)

\(=\dfrac{35}{6}\cdot\dfrac{30}{-31}-\dfrac{11}{31}\)

\(=\dfrac{-35\cdot5-11}{31}=\dfrac{-186}{31}=-6\)

11 tháng 4 2017

Bài 1)

Ta có:

A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)

A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1

Vậy A < 1

12 tháng 4 2017

Bài 2)

Ta thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) A < B

Bài 3)

Ta có:

B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= 0

Bài 3)

Ta có:

A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)

\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)

\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)

Bài 5)

\(\pi\) + 5 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)