Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
Bài 2:
a) \(\frac{x}{-27}=\frac{-3}{x}\Leftrightarrow-\frac{x}{27}=-\frac{3}{x}\Leftrightarrow-x.x=\left(-27\right).\left(-3\right)\Leftrightarrow-x^2=-81\Leftrightarrow\orbr{\begin{cases}x=9\\x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=9\\x=-9\end{cases}}\)
b) \(\frac{-9}{x}=\frac{-x}{\frac{4}{49}}\Leftrightarrow-\frac{9}{x}=-\frac{49x}{4}\Leftrightarrow-9.4=-x.49x\Leftrightarrow-36=-49x^2\Leftrightarrow\orbr{\begin{cases}x=\frac{6}{7}\\x=-\frac{6}{7}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{7}\\x=-\frac{6}{7}\end{cases}}\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(A=\frac{81^4.3^{10}.27^5:3^{12}}{3^{18}:9^3.243^2}=\frac{3^{16}.3^{10}.3^{15}:3^{12}}{3^{18}:3^6.3^{10}}=\frac{3^{29}}{3^{22}}=3^7\)
\(B=\frac{2.55^2-9.55^{21}}{25^{10}}:\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{2.55^2-9.55^2.55^{19}}{25^{10}}:\frac{5\left(21.7^{14}-19.7^{14}\right)}{7.7^{15}+3.7^{15}}=\frac{55^2\left(55^{19}.9-2\right)}{25^{10}}:\frac{5.7^{14}.2}{7^{15}.10}=\frac{55^2\left(55^{19}.9-2\right)}{25^{10}}.\frac{7^{15}.10}{5.7^{14}.2}\)Chịu ==
Bài 1
A= \(\frac{81^{10}.3^{17}}{27^{10}.9^{13}}\)
= \(\frac{\left(3^4\right)^{10}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{13}}\)
= \(\frac{3^{40}.3^{17}}{3^{30}.3^{26}}\)
= \(\frac{3^{57}}{3^{56}}\)= 3
\(\frac{x}{7}\)= \(\frac{-12}{49}\)
=> 49x = (-12) x 7
=> 49x = -84
=> x= \(\frac{-12}{7}\)