Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/. AC = AD + DC = 4 + 3 = 7
b/. Vì tia BD nằm giữa 2 tia BA và BC => ABD + DBC = ABC (góc)
=> 30 + DBC = 55
=> DBC = 25
c/. Vì tia BA nằm giữa 2 tia Bx và BD
=> DBA + ABx = xBD
30 + ABx = 90
=> ABx = 90 - 30 = 60
d/. Vì E thuộc AB và D thuộc AC ,mà AB và AC cắt nhau tại A nên CE và BD cắt nhau là hiển nhiên
cho mình hỏi ,làm sao bạn có thể tìm đc tia BA nằm giữa 2 tia Bx và BD
Đây là hình vẽ , lưu ý ở bên dưới ví dụ như ABC là góc ABC
C D A B x x
Vì điểm D thuộc AC nên điểm D nằm giữa 2 điểm A và C
=> AD + CD = AC
Thay số: 4 + 3 = AC
=> 7 = AC
=> AC = 7(cm)
Vậy AC = 7 cm
b) Trên cùng một nửa mặt phẳng bờ chứa tia BA có ABD = 30o, ABC = 55o
=> ABD < ABC
=> ABD + DBC = ABC
Thay số: 30o + DBC = 55o
=> DBC = 55o - 30o
=> DBC = 25o
Vậy DBC = 25o
c) TH1: Tia Bx và BD nằm trên cùng một nửa mặt phẳng bờ chứa tia BA
=> Tia BD nằm giữa hai tia BA và Bx
=> ABD + DBx = ABx
Thay số: 30o + 90o = ABx
=> 120 o = Abx
=> ABx = 120o
TH2: Tia Bx và tia BD nằm trên hai nửa mặt phẳng đối nhau bờ chứa tia BA
=> Tia BA nằm giữa hai tia BD và Bx
=> DBA + ABx = DBx
Thay số: 30o + ABx = 90o
=> ABx = 90o - 30o
=> ABx = 60o
Vậy TH1: ABx = 120o
TH2 : ABx = 60o
Chúc bạn học tốt nha!
bạn ơi đề thiếu phần d
d)trên ab lấy e.cmr 2 đoạn và ce cắt nhau
x y B A C D x y A B C z
a. Ta có ; AC = AD +CD
\(\Rightarrow\)AC = 4 + 3
\(\Rightarrow\)AC = 7cm
b.góc DBC = góc ABC - góc ABD
\(\Rightarrow\widehat{DBC}=55^0-30^0=25^0\)
c.\(\widehat{ABz}=\widehat{DBz}-\widehat{ABD}\)
\(\Rightarrow\widehat{ABz}=90^0-30^0=50^0\)
Học tốt
a) Vì D thuộc đoạn thẳng AC nên ta có:
AC=AD+DC=4+3=7AC=AD+DC=4+3=7 (cm)
b) Do ˆxBy=55oxBy^=55o hay ˆABC=55oABC^=55o
Ta có BD, BC thuộc cùng một mặt phẳng bờ chưa tia BA
và có ˆABD=30o<ˆABc=55oABD^=30o<ABc^=55o
⇒BD⇒BD nằm giữa tia BA,BCBA,BC
⇒ˆABC=ˆABD+ˆDBC⇒ABC^=ABD^+DBC^
⇒ˆDBC=ˆABC−ˆABD=55o−30o=25o⇒DBC^=ABC^−ABD^=55o−30o=25o
c) Vì Bz,BABz,BA cùng thuộc một nửa mặt phẳng bờ chứa tia BDBD
Và có ˆDBz=90o>ˆDBA=30oDBz^=90o>DBA^=30o
⇒BA⇒BA nằm giữa tia BD,BzBD,Bz
⇒ˆDBz=ˆDBA+ˆABz⇒DBz^=DBA^+ABz^
⇒ˆABz=ˆDBz−ˆDBA=90o−ˆ30o=60o⇒ABz^=DBz^−DBA^=90o−30o^=60o.