Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Vì \(5x=2y=3z\)
\(\Rightarrow5x:30=2y:30=3z:30\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Lại có: \(x+y-2=220\Rightarrow x+y=222\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)
Vậy ...
Bài 1:
\(5x=2y=3z\)
\(\Rightarrow5x:30=2y:30=3z:30\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Vì \(x+y-2=220\Rightarrow x+y=222\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)
\(A=\left(x-3,5\right)^2+1\)
Vì \(\left(x-3,5\right)^2\ge0\)
=> \(\left(x-3,5\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=3,5
\(B=\left(2x-3\right)^4-2\)
Vì \(\left(2x-3\right)^4\ge0\)
=> \(\left(2x-3\right)^4-2\ge-2\)
Vậy GTNN của B là -2 khi x=\(\frac{3}{2}\)
\(C=2-x^2=-x^2+2\)
Vì \(x^2\ge0\)
=> \(-x^2\le0\)
=>\(-x^2+2\le2\)
Vậy GTLN của C là 2 khi x=0
\(D=-\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\)
=> \(-\left(x-3\right)^2\le0\)
=>\(-\left(x-3\right)+1\le1\)
Vậy GTLN của D là 1 khi x=3
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
Bài 2
\(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)
\(+,x< -2\Rightarrow\left\{{}\begin{matrix}x+2< 0\\2x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|=-2-x\\\left|2x-3\right|=3-2x\end{matrix}\right.\Rightarrow1-3x=5\Rightarrow x=-\frac{4}{3}\left(\text{loại}\right)\)
\(+,x\ge\frac{3}{2}\Rightarrow\left\{{}\begin{matrix}2x-3\ge0\\x+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x-3\right|=2x-3\\\left|x+2\right|=x+2\end{matrix}\right.\Rightarrow3x-1=5\Rightarrow x=2\left(\text{thoa man}\right)\)
\(+,-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}x+2\ge0\\2x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|=x+2\\\left|2x-3\right|=3-2x\end{matrix}\right.\Rightarrow5-x=0\Rightarrow x=0\left(\text{thoa man}\right)\)
\(2.\text{ Ta co:}\left\{{}\begin{matrix}\left|x-102\right|\ge102-x\\\left|2-x\right|\ge x-2\end{matrix}\right.\Rightarrow A\ge102-x+x-2=100.\Rightarrow A_{min}=100.\text{dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}102-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow2\le x\le102\)
Dung mà cx dùng cái này cơ.Tao Bống nè!!!