Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
a) 2 + 4 + 6 + ... + 2n = 210
1.2 + 2.2 + 2.3 + ... + 2n = 210
2.(1+2+3+...+n) = 210
1 + 2 + 3 + ... + n = 105
\(\frac{n\left(n+1\right)}{2}\)= 105
n(n+1) = 210
n(n+1) = 14.15
=> n = 14
b) 1+3+5+...+(2n-1)=225
\(\frac{\left(2n-1+1\right).n}{2}\) =225
\(\frac{2n.n}{2}\) =225
\(\frac{2.n^2}{2}\) =225
\(n^2\) =225
Ta có: \(n^2\) =225 = \(3^2\).\(5^2\)= \(\left(15\right)^2\)
=> n = 15
a,
Theo bài ra ta có: 2n +5 chia hết cho n+2
Mà 2n chia hết cho n
Suy ra: ( 2n +5)- 2(n+2) chia hết cho n+2
2n +5 - 2n-2 chia hết cho n+2
3 chia hết cho n+2
Suy ra: n+2 thuộc Ư(3) = { 1,3}
Ta có :
n+2=1 ( phép tính ko thực hiện được)
n+2=3 vậy n=1
Vậy ta có số tự nhiên n là 1
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
dài thấy mợ luôn để t lm đc bài nào thì t lm
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+2^2+2^3+...+2^100 chia hết cho 2
A=2+2^2+2^3+2^4+...+2^99+2^100
A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số.
c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )
A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0.
A=....0
B) n+5/n+3
Ta có:
(n+5) - (n+3) chia hết cho n+3
=>(n-n) + (5-3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}
Ta có:
*)n+3= 1
n=1-3
n= -2
*)n+3=2
n= 2 - 3
n= -1
*)n+3= -1
n= -1-3
n= -4
*)n+3= -2
n= -2 - 3
n= -5
Để tớ gửi từ từ từng câu 1 nhé
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a.
\(1+2+3+...+n=820\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640\)
\(\Leftrightarrow n\left(n+1\right)=40.41\)
\(\Rightarrow n=40\)
b.
\(\left(n+5\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+1⋮n+1\)
\(\Rightarrow n+1=Ư\left(1\right)\)
\(\Rightarrow\left[{}\begin{matrix}n+1=-1\\n+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=-2\notin N\left(loại\right)\\n=0\end{matrix}\right.\)
c.
\(\left(2n+7\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4+3\right)⋮\left(n+2\right)\)
\(\Rightarrow2\left(n+2\right)+3⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do n tự nhiên \(\Rightarrow n\ge0\Rightarrow n+2\ge2\)
\(\Rightarrow n+2=3\)
\(\Rightarrow n=1\)