Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh là x.
Theo đề ta có: x : 15,20,25 dư 12 => x - 12 \(⋮\)15,20,25.
=> \(x-12\in BC\left(15,20,25\right)\)
\(\Rightarrow x-12\in\left\{0;300;600;900;1200;...\right\}\)
\(\Rightarrow x\in\left\{12;312;612;912;1212;...\right\}\)
Mà x\(⋮\)36 và x có 3 chữ số => x = 612.
Vậy có 612 học sinh tham gia đồng diễn thể dục.
Gọi m (m ∈ N* và m < 300 ) là số học sinh của một khối.
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:
(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6
Suy ra (m +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301
Ta có: 2 = 2
3 = 3
4=2^2
5 = 5
6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5=60
BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}
Vì m + 1 < 301 nên m + 1 ∈ {60;120;180;240;300}
Suy ra: m ∈ {59;119;179;239;299}
Ta có: 59 ⋮̸ 7; 119 ⋮ 7; 179 ⋮̸ 7; 239 ⋮̸ 7; 299 ⋮̸ 7
Vậy khối có 119 học sinh.
a) số chia cho 9 dư 5 có dạng 9a+5
ta có 9a+5 chia 7 dư 2a+5
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5
=>3b/10-1/2 là số nguyên
=>3b-5 chia hết cho 10
=>b=5
=>số cần tìm là 63*5/2+1/2=158
Bài 1 :
a. Gọi số cần tìm là a.
Ta có: a : 5 dư 3
a : 7 dư 4 => 2a -1 chia hết cho 5; 7; 9 mà
a : 9 dư 5 a nhỏ nhất => 2a - 1 nhỏ nhất
=> 2a - 1 \(\in\) BCNN\(\left(5,7,9\right)\) = 315
=> 2a = 316 => a = 158
Vậy số tự nhiên cần tìm là 158
Bài 2:
A = 2880 : \(\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)
A = 2880 : \(\left\{\left[119-7^2\right].2-25.4\right\}\)
A = 2880 : \(\left\{\left[119-49\right].2-100\right\}\)
A = 2880 : \(\left\{70.2-100\right\}\)
A = 2880 : \(\left\{140-100\right\}\)
A = 2880 : 40
A = 72
B = \(\frac{\frac{-2}{13}-\frac{3}{15}+\frac{3}{10}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{10}}\)
B = \(\frac{\frac{-23}{65}+\frac{3}{10}}{\frac{112}{195}+\frac{4}{10}}\)
B = \(\frac{-3}{20}\)
NHƯ VẬY MÀ BẠN BẢO TÍNH HỢP LÍ SAO TOÀN NHỮNG PHÉP TÍNH RA SỐ TO KHỦNG MÌNH THẤY CHẲNG HỌP LÍ TÍ NÀO CẢ NÊN MÌNH KHÔNG LÀM BÀI NÀY NỮA NHƯNG NHỚ TÍCH CHO MÌNH NHA
Hầu hết các bài này đều sử dụng nguyên tắc Dirichlet :
Bài 2 :
Xét trong một lớp học có 40 học sinh, theo nguyên tắc Dirichlet thì tồn tại ít nhất :
\(\left[\frac{40}{12}\right]+1=4\) học sinh cùng sinh trong một tháng.