Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\dfrac{x-3}{4}=\dfrac{15}{20}\)
<=> \(\dfrac{x-3}{4}=\dfrac{3}{4}\)
=> x-3=3
<=> x=6
Vậy x=6
\(a,\dfrac{x}{15}=\dfrac{4}{y}=\dfrac{-2}{5}\)
* \(\dfrac{x}{15}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{-6}{15}\)
\(\Rightarrow x=-6\)
*\(\dfrac{4}{y}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{4}{y}=\dfrac{4}{-10}\)
\(\Rightarrow y=-10\)
Vậy x = - 6 ; y = - 10
\(b,\dfrac{x-3}{4}=\dfrac{15}{20}\)
=> ( x - 3 ) . 20 = 4. 15
=> 20x - 60 = 60
=> 20x = 60 + 60
=> 20x = 120
=> x = 120 : 20
=> x = 6
Vậy x = 6
\(c,\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{22}{-9}+\dfrac{-7}{15}< x\le\dfrac{-1}{3}+\dfrac{-1}{4}+\dfrac{-5}{12}\)
\(\Rightarrow\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{-22}{9}+\dfrac{-7}{15}< x\le\dfrac{-4}{12}+\dfrac{-3}{12}+\dfrac{-5}{12}\)
\(\Rightarrow\left(\dfrac{-5}{9}+\dfrac{-22}{9}\right)+\left(\dfrac{-8}{15}+\dfrac{-7}{15}\right)< x\le-1\)
\(\Rightarrow-3+\left(-1\right)< x\le-1\)
\(\Rightarrow-4< x\le-1\)
\(\Rightarrow x=-3;-2;-1\)
bài 2:để Z là số nguyên thì 3n-5 \(⋮\)n+4
\(\Rightarrow[(3n-5)-3(n+4)]⋮(n+4)\)
\(\Rightarrow(3n-5-3n-12)⋮(n+4)\)
\(\Rightarrow-17⋮n+4\)
\(\Rightarrow n+4\inƯ(17)\)={1;-1;17;-17}
\(\Rightarrow\)n\(\in\){-3;-5;13;-21}
\(x+8-(x+22)=x+8-x-22=8-22=-14\)
\(-(x+5)+(x+10)-5=-x-5+x+10-5=0\)
1*5* \(⋮\)2;3;5;6;9
Vì 1*5* chia hết cho 2 và 5 nên dấu sao cuối cùng=0
Ta có: 1*5* chia hết cho 6=> chia hết cho 3 và 2
1*5* chia hết cho 9
1*50 chia hết cho 9
1+*+5+0 chia hết cho 9
6+* chia hết cho 9=> *=3
vậy số cần tìm là 1350
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+.....+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)
Để \(A\in Z\)thì
\(n+2⋮n-5\)
\(n-5+7⋮n-5\)
\(\Leftrightarrow7⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(n\in\left\{6;4;12;-2\right\}\)
1 bỏ dấu ngoặc rồi tính :
a) x+ 8 - ( x + 22)
= x + 8 - x - 22
= -14
b) -(x+5) + (x + 10 ) - 5
= -x - 5 + x + 10 -5
= 0
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
a) Ta có: \(\dfrac{15}{x}=\dfrac{y}{7}\)
\(\Rightarrow xy=105\)
\(\Rightarrow x,y\inƯ\left(105\right)\)
mà Ư(105) \(=\left\{..........\right\}\)
\(\Rightarrow x,y\in\left\{.........\right\}\)
Vậy \(x,y\in\left\{........\right\}\)
b) Lại có: \(\dfrac{2}{x+4}=\dfrac{y-3}{6}\)
\(\Rightarrow\left(x+4\right)\left(y-3\right)=12\)
Vì \(x,y\in Z\Rightarrow\left[{}\begin{matrix}x+4\in Z\\y-3\in Z\end{matrix}\right.\)
\(\Rightarrow x+4\inƯ\left(12\right);y-3\inƯ\left(12\right)\)
mà \(Ư\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Từ đó tự lập bảng xét các giá trị \(x,y.\)
Vậy \(\left(x,y\right)\in\left\{\left(...,...\right);...\right\}\)
1a)\(\dfrac{15}{x}=\dfrac{y}{7}\)
suy ra x.y=15.7
x.y=105
x.y \(thuộc\)Ư(105)=3;5;7
Vậy x;y =3;5;7
Bài 2:
a: Để A là phân số thì x+6<>0
hay x<>-6
b: Để A là sốnguyen thì \(x+6-13⋮x+6\)
\(\Leftrightarrow x+6\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{-5;-7;7;-19\right\}\)
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
Bài 1 :
Sửa đề :
Tìm \(n\in Z\) để những phân số sau đồng thời có giá trị nguyên
\(\dfrac{-12n}{n};\dfrac{15}{n-2};\dfrac{8}{n+1}\)
Làm
Ta có :
\(\dfrac{-12n}{n}=-12\)
\(\Leftrightarrow\) Với mọi \(n\) thì \(\dfrac{-12n}{n}\) đều có giá trị nguyên \(\left(1\right)\)
Để \(\dfrac{15}{n-2}\in Z\) \(\Leftrightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm15;\pm3;\pm5\right\}\)
\(\Leftrightarrow n\in\left\{-13;\pm3;\pm1;5;7;17\right\}\left(1\right)\)
Để \(\dfrac{8}{n+1}\in Z\Leftrightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow n\in\left\{-9;-5;\pm3;-2;0;1;7\right\}\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow n\in\left\{\pm3;1;7\right\}\)