K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

\(8⋮n-2\Rightarrow n-2\inƯ\left(8\right)\)

\(Ư\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(n\in\left\{3;1;4;0;6;-2;10;-6\right\}\)

(làm mẫu 1 câu tự làm nốt nhé!!!!!!!)

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá 

15 tháng 1 2019

Bài 1:

a) n thuộc N

b) để 4n + 5 chia hết cho 5

=> 4n chia hết cho 5

=> n chia hết cho 5

=> n thuộc bội dương của 5

c) để 38 - 3n chia hết cho n

=> 38 chia hết cho n

=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)

...

xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1

=> n + 1 + 4 chia hết cho n + 1

=> 4 chia hết cho n + 1

=>...

e) để 3n + 4 chia hết cho n -1

=> 3n - 3 + 7 chia hết cho n - 1

3.(n-1) +7 chia hết cho n - 1

...

15 tháng 1 2019

Bài 2:

a) để 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n - 1

3.(n-1) + 5 chia hết cho n - 1

...

b) n^2 + 2n + 7 chia hết cho n + 2

n.(n+2) + 7 chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) n^2 + 1 chia hết cho n - 1

=> n^2 - n + n - 1 + 2 chia hết cho n - 1

=> (n+1).(n-1) + 2 chia hết cho n  -1

=> 2 chia hết cho n - 1

d) n + 3 + 5 chia hết cho  n + 3

e) n -1 + 7 chia hết cho  n - 1

f) 4n - 2 + 7 chia hết cho 2n - 1

...

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

22 tháng 1 2016

c) n2 + 2n + 7 chia hết cho n + 2

=> n(n + 2) + 7 chia hết cho n + 2

Mà n(n + 2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=> n + 2 \(\in\){-1;1;-7;7}

=> n \(\in\){-3;-1;-9;5}

22 tháng 1 2016

a) n + 6 chia hết cho n

Mà n chia hết cho n

=> 6 chia hết cho n

=> n \(\in\){-1;1;-2;2;-3;3;-6;6}

Mà n thuộc N

=. n \(\in\){1;2;3;6}

14 tháng 10 2018

a,  3n + 6 chia hết cho n 
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n 
=>n ЄƯ {1;2;3;6}  vậy n = 1 ; 6 ;2;3

b, (5n-5)chia hết cho n

vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5  phải chia hết cho n 
=>n Є {1;5}  vậy n = 1 ; 5 

15 tháng 10 2018

Để mk làm tiếp mấy bài còn lại nhé!

c) ta có: 3n + 9 chia hết cho n + 2

=> 3n + 6 + 3  chia hết cho n + 2

3.(n+2) + 3  chia hết cho n + 2

mà 3.(n+2)  chia hết cho n + 2

=> 3  chia hết cho n + 2

...

bn tự  làm tiếp nhé!

d) ta có: 4n + 8  chia hết cho n  - 2

=> 4n - 8 + 16  chia hết cho n  - 2

4.(n-2) + 16  chia hết cho n - 2

mà 4.(n-2)  chia hết cho n - 2

=> 16  chia hết cho n - 2

...

e) ta có: 3n + 8  chia hết cho 2n + 1

=> 2.(3n+8)  chia hết cho 2n + 1

6n + 16  chia hết cho 2n + 1

6n + 3 + 13  chia hết cho 2n + 1

3.(2n+1) + 13  chia hết cho 2n + 1

mà 3.(2n+1)  chia hết cho 2n + 1

=> 13  chia hết cho 2n + 1

...

a: \(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

b: \(\Leftrightarrow3n-3+8⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)

c: \(\Leftrightarrow4n+6+4⋮2n+3\)

\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)

hay \(n\in\left\{-1;-2\right\}\)

d: \(\Leftrightarrow15n+18⋮3n+1\)

\(\Leftrightarrow15n+5+13⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)

hay \(n\in\left\{0;4\right\}\)