K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2021

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

8 tháng 8 2021

ank

 

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

a) ĐK: $x\geq 0$

\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)

\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)

Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)

b) Không đủ căn cứ để tìm min- max

c)

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)

\(=|2x-1|+|2x-3|\)

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)

Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)

e)

\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)

\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)

Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$

f) ĐK: $x\geq 4$

\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)

Với mọi $x\geq 4$ thì:

\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)

\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)

$\Rightarrow E\leq 3$

Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

20 tháng 10 2020

Bài 1 : 

+) ĐKXĐ  : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) Ta có : 

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=3-2\sqrt{3}+1\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ ) 

Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là : 

\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)

b) 

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có :

\(P=A:B\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)

c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)

Dấu bằng xảy ra 

\(\Leftrightarrow-\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )

Vậy không tìm được giá trị nào của x để P đạt GTNN