Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(b=\frac{2}{a};c=\frac{54}{a}\)
\(\Rightarrow\frac{2}{a}.\frac{54}{a}=3\Rightarrow\frac{108}{a^2}=3\Rightarrow a^2=36\Rightarrow a=\pm6\)
Thay vào các bt ta đc:
Tự thay nha (mỗi cái 2 th)
\(2^m-2^n=256\)
\(\Rightarrow2^n.\left(2^{m-n}-1\right)=256\)
\(2^m-2^n=16^2\Rightarrow2^m>2^n\)
\(\Rightarrow m>n\)
mà \(2^{m-n}-1\) lẻ
\(\Rightarrow2^{m-n}=1\)
\(\Rightarrow2^n=256\Rightarrow n=8\)
\(\Rightarrow m=9\)
Vậy ...
a) Đặt m = n + k
Ta có 2m - 2n = 256
<=> 2n + k - 2n = 256
<=> 2n(2k - 1) = 256 (1)
Nhận thấy : 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 = 1 => 2k = 2 => k = 1
Khi đó 2n = 256
<=> n = 8
=> m = n + k = 9
Vậy m = 9 ; n = 8
b) Đặt m = n + k (k \(\inℕ^∗\))
Khi đó 2m - 2n = 1984
<=> 2n + k - 2n = 1984
<=> 2n(2k - 1) = 1984 (1)
Vì 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 \(\in\left\{31;1\right\}\)
Khi 2k - 1 = 31
=> 2k = 32
=> k = 5
Khi đó 2n = 64 => n = 6
=> m = n + k = 11
Khi 2k - 1 = 1
=> 2k = 2
=> k = 1
Khi đó 2n = 992
=> n \(\in\varnothing\)
Vậy n = 6 ; m = 11
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
- Nếu m-n =1 thì
2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
- Nếu m-n lớn hơn hoặc bằng 2 thì :
2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
2m - 2n = 256
<=> 2n(2m-n -1) = 28
Trường hợp 1 : m- n= 1
=> n=8 và m=9 (thỏa mãn
Trường hợp 2: m- n > hoặc = 2
=>2n(2m-n -1) là số lẻ. Mà là số chẵn ( mâu thuẫn)
Vậy n=8 và m=9
2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9
Vì 256 > 0 => m > n
Giả sử m = n + k (k ∈ N*)
Thay vào phương trình, ta có:
....................2ⁿ.2^k - 2ⁿ= 2^8
...............⇔ 2ⁿ(2^k - 1) = 2^8
Nếu k ≥ 2 => 2^k - 1 luôn lẻ => 2^k - 1 khác luỹ thừa của 2 (loại)
Vậy k = 1 => m = n + 1
Thay vào phương trình, ta có:
.....................2ⁿ.2 - 2ⁿ = 2^8
................⇔ 2ⁿ = 2^8
................⇔ n = 8
................⇔ m = n + 1 = 8 + 1 = 9
Thử lại thấy đúng, do đó kết luận m = 9, n = 8
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
=>2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
b, Vì \(2^m-2^n=256>0\) nên m >n
Đặt m-n=d (d >0)
Ta có :
\(2^m-2^n=2^n.\left(2^d-1\right)=256=2^8.1\)
=> 2n =28 và 2d-1=1
=>n=8 và d=1
=> m=1+8=9
Vậy m=9, n=8
a, 2m + 2n = 2m+n
=> 2m+n - 2m - 2n = 0
=> 2m(2n - 1) - (2n - 1) = 1
=> (2m - 1)(2n - 1) = 1
=> \(\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\)=> m = n = 1
Vậy m = n = 1
b, 2m - 2n = 256
Dễ thấy m ≠ n, ta xét hai trường hợp:
- Nếu m - n = 1 => n = 8, m = 9
- Nếu m - n ≥ 2 => 2m-n - 1 là số lẻ lớn hơn 1, khi đó VT chứa thừa số nguyên tố khác 2
Mà VT chứa thừa số nguyên tố 2 => trường hợp này không xảy ra
Vậy m = 9, n = 8