K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

1,a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)b, Tìm số dư của phép chia A cho B. Biết:\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)\(B=\left(x^2+8x+1\right)\)c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)a, Rút gọn A ( Phải tìm...
Đọc tiếp

1,

a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)

b, Tìm số dư của phép chia A cho B. Biết:

\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(B=\left(x^2+8x+1\right)\)

c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)

2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)

a, Rút gọn A ( Phải tìm TXĐ)

b, Tìm x để A = 64

3,

a, Rút gọn biểu thức: \(M=75\left(4^{2016}+4^{2015}+........+4+1\right)+25\)

b, Tìm x biết: \(x^4-30x^2+31x-30=0\)

c, Tìm x, y là các số nguyên tố để \(x^2+45=y^2\)

4, Cho tam giác ABC vuông tại A (AC > AB) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC ại D cắt AC tại E

a, CMR: AE = AB    (gợi ý: Từ E kẻ EF vuông góc với AH ( F thuộc AH)

b, Gọi M là trung điểm của BE. Tính \(\widehat{AHM}\)

5, 

a, CMR: với mọi số nguyên a thì (a^3 - a) chia hết cho 6

b, Cho \(A=a_{1^3+}a_{2^3}+........+a_{n^3}\)

          \(B=\left(a_1+a_2+.......+a_n\right)^3\)

CMR: A chia hết cho 6 thì B chia hết cho 6

0
22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

5 tháng 1 2018

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

26 tháng 11 2018

b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)

=> đa thức dư trong phép chia là 2x+1

\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)

\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)

\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)

=> đa thức dư trong phép chia là 9

p/s: t mới lớp 7_sai sót mong bỏ qua :>

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....