Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(mx^2-\left(m+1\right)x+1=\left(x-1\right)\left(2x-1\right)\)
\(\Leftrightarrow mx^2-\left(m+1\right)x+1=2x^2-3x+1\)
Đồng nhất hệ số \(\Rightarrow\hept{\begin{cases}m=2\\m+1=3\end{cases}\Rightarrow m=2}\)
2) Ta có \(\left(x-3\right)\left(ax+2\right)=\left(2x+b\right)\left(x+1\right)\)
\(\Leftrightarrow ax^2+\left(2-3a\right)x-6=2x^2+x\left(2+b\right)+b\)
Đồng nhất hệ số \(\Rightarrow\hept{\begin{cases}a=2\\2-3a=2+b\\-6=b\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-6\end{cases}}\)
a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)
Phương trình nhận \(x=2\)làm nghiệm nên :
\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)
\(\Leftrightarrow15m+90-20=80\)
\(\Leftrightarrow15m=80+20-90\)
\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)
....
b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)
Phương trình nhận \(x=1\)làm nghiệm nên :
\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)
\(\Leftrightarrow30+15m-32=43\)
\(\Leftrightarrow15m=43+32-30\)
\(\Leftrightarrow15m=45\Leftrightarrow m=3\)
....
\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
\(\Leftrightarrow416-x=0\)
\(\Leftrightarrow x=416\)
a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80
Phương trình có nghiệm x = 2:
5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80
<=> 5(m + 6).3 - 4.5 = 80
<=> 15(m + 6) - 4.5 = 80
<=> 15(m + 6) - 20 = 80
<=> 15(m + 6) = 80 + 20
<=> 15(m + 6) = 100
<=> m + 6 = 100 : 15
<=> m + 6 = 20/3
<=> m = 20/3 - 6
<=> m = 2/3
b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43
Phương trình có nghiệm x = 1:
3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43
<=> 3(2 + m).5 - 2.16 = 43
<=> 15(2 + m) - 32 = 43
<=> 15(2 + m) = 43 + 32
<=> 15(2 + m) = 75
<=> 2 + m = 75 : 15
<=> 2 + m = 5
<=> m = 5 - 2
<=> m = 3
Thay x=1 vào phương trình ta được:
2(2.1+1)+18=3(1+2)(2.1+k)
->24=9(2+k)
-> k=2/3
P/S: với dạng toán hỏi: tìm giá trị của k để biểu thức có nghiệm là x=\(x_0\)thì ta giái bằng cách thay nghiệm \(x_0\)đó vào phương trình rồi giải tìm ra k
2(2x+1)+18=3(x+2)(2x+k)
Thay x=1 vào phương trình trên :
2(2+1)+18=3(1+2)(2+k)
4+2+18=(3+6)(2+k)
24=6+3k+12+6k
-3k-6k=-24+6+12
-9k=-6
k=2/3
a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)
\(\Rightarrow25-25+b=0\Rightarrow b=0\)
Lúc đó phương trình trở thành \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là 0
b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)
\(\Rightarrow3b-6=0\Leftrightarrow b=2\)
Lúc đó phương trình trở thành \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là -5
a) Vì \(x=5\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:
\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)
Thay \(b=0\)vào phương trình ta được:
\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)
b) Vì \(x=3\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:
\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)
\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)
Thay \(b=2\)vào phương trình ta được:
\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)
a) Ta có :
\(3x=3\left(x+2\right)\)
\(\Leftrightarrow3x=3x+2\)
\(\Leftrightarrow0=2\) ( vô lí )
Do đó pt đã cho vô nghiệm
b) Ta có \(\left|x\right|=-x^2-2\) (1)
Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)
VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)
Do đó : \(VT\ne VP\)
Vì vậy pt đã cho vô nghiệm