Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
- Vì \(\frac{x}{5}=\frac{y}{3}\)=) \(3x=5y\)=) \(x=\frac{5y}{3}\)
=) \(x^2-y^2=4\)=) \(\left(\frac{5y}{3}\right)^2-y^2=4\)
=) \(\frac{25y^2}{9}-y^2=4\)=) \(\frac{25y^2}{9}-\frac{9y^2}{9}=\frac{36}{9}\)
=) \(25y^2-9y^2=36\)=) \(16y^2=36\)=) \(y^2=\frac{36}{16}=\frac{9}{4}\frac{3^2}{2^2}\)=) \(y=\frac{3}{2}\)
=) \(x=\frac{5.\frac{3}{2}}{3}=\frac{\frac{15}{2}}{3}=\frac{5}{2}\)
a) Đặt x/5 = y/3 = k => x = 5k ; y = 3k
Ta có: x2 - y2 = 4
=> (5k)2 - (3k)2 = 4
=> 25k2 - 9k2 = 4
=> 16k2 = 4
=> k2 = 1/4
=> k = ±1/2
Với k = 1/2 thì x = 5/2, y = 3/2
Với k = -1/2 thì x = -5/2, y = -3/2
b) Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=> x + y + z = 1/2 ; x/y+z+1 = 1/2 ; y/z+x+1 = 1/2 ; z/x+y-2 = 1/2
=> \(\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Ta có
\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)
Ap dụng tính chất DTSBN
\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)
Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{z+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{y+z+z+x+x+y+1+2-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
\(\frac{y+z+1}{x}=2\)
\(\Rightarrow y+z+1=2x\)
\(x+y+z+1=3x\Rightarrow\frac{3}{2}=3x\)
Tương tự với mấy cái khác bạn tính được x,y,z
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)
\(\Rightarrow\frac{1}{x+y+z}=\frac{2x+2y+2z}{x+y+z}\)
\(\Rightarrow1=2\left(x+y+z\right)\)
\(\Rightarrow x+y+z=\frac{1}{2}\left(1\right)\)
Thay vào đề đc :
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{\frac{1}{2}}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(2\right)\\z+x+2=2y\left(3\right)\\x+y-3=2z\left(4\right)\end{cases}}\)
Từ (2) => x + y + z + 1 = 3x
Thay (1) vào đc \(\frac{1}{2}+1=3x\)
\(\Leftrightarrow3x=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1}{2}\)
Từ (3) => x + y + z + 2 = 3y
Thay (1) vào đc \(\frac{1}{2}+2=3y\)
\(\Leftrightarrow y=\frac{5}{6}\)
Khi đó \(z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)