K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(=\left(x^2-3x+2\right)\left(x-3\right)\)

\(=x^3-3x^2-3x^2+9x+2x-6\)

\(=x^3-6x^2+11x-6\)

b: \(\left(x^2+x+1\right)\left(x^2-1\right)\left(x^2-x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\cdot\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

c: \(=8x-6x^2-20+15x-\left(15x-6x^2+55-10x\right)-30x+75\)

\(=-6x^2-7x+55+6x^2-5x-55\)

\(=-12x\)

d: \(\left(x^2-2x+3\right)\left(3x-5\right)-\left(x^2+x-1\right)\left(2x+7\right)\)

\(=3x^3-5x^2-6x^2+10x+9x-10-\left(x^2+x-1\right)\left(2x+7\right)\)

\(=3x^3-11x^2+19x-10-\left(2x^3+7x^2+2x^2+7x-2x-7\right)\)

\(=3x^3-11x^2+19x-10-2x^3-9x^2-5x+7\)

\(=x^3-20x^2+14x-3\)

13 tháng 8 2017





a, (x-1).(x-2).(x-3)

= (x2 - 2x - x + 2) . (x-3)

= (x- 3x + 2). (x-3)4

= x3 - 3x2 - 3x2 + 9x + 2x -6

= x3 - 6x+ 11x -6

b) (x2 +x+1)(x2-1)(x2-x+1)

= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)

= (x4 + x3 -x -1) . (x2 - x  +1)

= x- x5 + x4 + x- x4 + x3 - x2 + x -1

= x6 + x3 - x+ x - 1

c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)

= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75

= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75

= 6x-6x2 +55

d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)

làm tương tự phần C

lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu



 


 

22 tháng 6 2016

a) \(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)

b)  \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)=6x^2-3x+4x-2\left(3-x\right)\)

                                                          \(=6x^2-3x+4x-6+2x\)

                                                            \(=6x^2+3x-6\)

c) \(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2+3x^2+9x-5x-15\)

                                                  \(=x^3+6x^2+4x-15\)

d) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+x^2-x^2-x+x+1\)

                                                \(=x^3+1\)

e) \(\left(2x^3-3x-1\right)\left(5x+2\right)=10x^4-15x^2-5x+4x^3-6x-2\)

                                                       \(=10x^4+4x^3-15x^2-11x-2\)

f) \(\left(x^2-2x+3\right)\left(x-4\right)=x^3-2x^2+3x-4x^2+8x-12\)

                                                 \(=x^3-6x^2+11x-12\)

28 tháng 8 2016

1.a) \(\Leftrightarrow\) 3x+10-2x =0

  \(\Leftrightarrow\text{ 3x-2x=-10}\)

   \(\Leftrightarrow x=-10\)

b) coi lại có thiếu ngoặc ko nhé

cứ nhân vào dấu ngoặc rồi làm như thường

       

24 tháng 12 2017

https://giaibaitapvenha.blogspot.com/2017/12/en-voi-do-homework-for-you-e-trai.html

18 tháng 6 2016

f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)

\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)

\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)

\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)

\(-x^3=27\)

\(x=-3\)

18 tháng 6 2016

Bài 1:

a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(6x-9+4-2x=-3\)

\(4x=-2\)

\(x=-\frac{1}{2}\)

b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)

\(2x^3-4x+x^2-2x^3-x^2=-12\)

\(-4x=-12\)

\(x=\frac{1}{3}\)

6 tháng 7 2017

a) = 8x-6x-20+15x-15-6x+55-22x-30x+75

b)3x3+5x2-6x2+10x+9x-15-2x3+7x2+2x2+7x-2x-7

bạn chỉ cần chép lại đầu bài rồi ghi kết quả này vào là xong nhá bởi vì đây là nhân đa thức với đa thức mà

6 tháng 7 2017

a) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)

  =(2x-5)(4-3x)+(3x+11)(2x-5)-15(2x-5)

  =(2x-5)[(4-3x)+(3x+11)-15]

  =(2x-5)(4-3x+3x+11-15)

  = 2x-5

1 tháng 4 2020

e, 3x(2-x) =15(x-2)

\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy..

f, (x+5)(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

Vậy..

g, x(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

,h, (2x -4)(x-2)=0

\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

i, (x+1/5)(2x-3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)

k, x²-4x=0

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

m, 4x²-1=0

\(\Leftrightarrow\left(2x\right)^2-1^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

n, x²-6x+9=0

\(\Leftrightarrow x^2-2.x.3+3^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)

<=> x=3

l, (3x-5)²-(x+4)²=0

\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)

\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy ..

o, 7x(x+2)-5(x+2)=0

\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)

Vậy....

p, 3x(2x-5)-4x+10=0

\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)

\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy...

q, (2-2x)-x²+1=0

\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)

\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy ....

r, x(1-3x)=5(1-3x)

\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)

s, 2x-3/4+x+1/6=3

\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)

1 tháng 4 2020

r, x(1-3x)=5(1-3x)

➜x(1-3x)-5(1-3x)=0

➜(x-5)(1-3x)=0

\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Mk lười lắm mai nha!!!~~~~~~~~~~~~

26 tháng 10 2019

Bài 1:

a) \(3x\left(5x^2-2x+1\right)\)

\(=15x^3-6x^2+3x\)

b) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^2\left(x^2-1\right)+2x\left(x^2-1\right)\)

\(=x^4-x^2+2x^3-2x\)

\(=x^4+2x^3-x^2-2x\)

Bài 2:

a) \(3x^2=2x\)

\(\Leftrightarrow3x^2-2x=0\)

\(\Leftrightarrow x\left(3x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)

26 tháng 10 2019

b)\(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-2x-1=12x-5\)

\(\Leftrightarrow14x=4\Leftrightarrow x=\frac{2}{7}\)