Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\sqrt{\left(3\right)^8}}\)=\(\sqrt{\sqrt{6561}}=\sqrt{81}=9\)
\(\sqrt[2]{\left(-5^4\right)}=\sqrt[2]{625}=25\)
1.
\(\sqrt{\frac{2+\sqrt{3}}{2}}\\ =\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}\\ =\frac{\sqrt{4+2\sqrt{3}}}{2}\\ =\frac{\sqrt{\left(1+\sqrt{3}\right)^2}}{2}\\ =\frac{1+\sqrt{3}}{2}\)
2.
\(\sqrt{\frac{14+5\sqrt{3}}{2}}\\ =\frac{\sqrt{14+5\sqrt{3}}}{\sqrt{2}}\\ =\frac{\sqrt{28+10\sqrt{3}}}{2}\\ =\frac{\sqrt{\left(5+\sqrt{3}\right)^2}}{2}\\ =\frac{5+\sqrt{3}}{2}\)
1/\(\sqrt{\frac{4}{5}}\)+\(\sqrt{\frac{1}{2}}\)
=\(\sqrt{\frac{4.5}{5.5}}\)+\(\sqrt{\frac{1.2}{2.2}}\)
= \(5.2.\sqrt{5}\)+\(2\sqrt{2}\)
=\(10\sqrt{5}+2\sqrt{2}\)
2.
\(\sqrt{\frac{1}{12}}\)+\(\sqrt{\frac{1}{3}}\)
=\(\sqrt{\frac{1.12}{12.12}}\)+\(\sqrt{\frac{1.3}{3.3}}\)
=\(12.2\sqrt{3}\)+\(3\sqrt{3}\)
=\(\sqrt{3}\left(24+3\right)\)
=\(27\sqrt{3}\)
\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)
\(=-2+\sqrt{6}-3+2\sqrt{6}\)
\(=-5+3\sqrt{6}\)
\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)
\(=3-\sqrt{7}-2+2\sqrt{7}\)
\(=1+\sqrt{7}\)
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
a ) Để ý thấy \(16\sqrt{3}=2.2\sqrt{3}.4=2.\sqrt{12}.4\) , như vậy , ta sẽ tách :
\(28=12+16\) \(\Rightarrow\sqrt{\sqrt{28+16\sqrt{3}}=\sqrt{\sqrt{12+16+16\sqrt{3}}}}=\sqrt{\sqrt{\left(\sqrt{12}+4\right)^2}}=\sqrt{\sqrt{12}+4}\)
\(=\sqrt{3+2.\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b ) \(4\sqrt{3}=2.2\sqrt{3}\), tách \(7=4+3\)
c ) \(24\sqrt{5}=2.\sqrt{5}.12=2.\sqrt{5}.2.6=2.\sqrt{20}.6\) , tách : \(56=20+36\)
d ) \(2\sqrt{11}=2.11.1\) , tách : \(12=11+1\)
e ) \(4\sqrt{2}=2.\sqrt{2}.2.1=2.\sqrt{8}.1\) , tách : \(9=8+1\)
a) \(\sqrt{\sqrt{28+16\sqrt{3}}}\)
\(=\sqrt{\sqrt{\left(2\sqrt{3}\right)^2+2\cdot2\sqrt{3}\cdot4+16}}\)
\(=\sqrt{\sqrt{\left(2\sqrt{3}+4\right)^2}}\) \(=\sqrt{2\sqrt{3}+4}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b)\(\sqrt{7+4\sqrt{3}}=\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
c) \(\sqrt{\sqrt{56-24\sqrt{5}}}=\sqrt{\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot6}+36}\)
\(=\sqrt{\sqrt{\left(2\sqrt{5}-6\right)^2}}=\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
d) \(\sqrt{12-2\sqrt{11}}=\sqrt{11-2\sqrt{11}+1}\)
\(=\sqrt{\left(\sqrt{11}-1\right)^2}=\sqrt{11}-1\)
e) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}\)
\(=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)