Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Sửa đề là với n >= 2 nhé!Mình cũng không chắc nx!Mình ngu dạng này lắm=(((
Với n = 2 thì \(VT=\frac{1}{5}+\frac{2}{13}+\frac{1}{25}< \frac{9}{20}\) (đúng)
Mệnh đề đúng với n = 2
Giả sử đúng với n = k (k>= 2)tức là \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\) (giả thiết qui nạp)
Ta chứng minh nó đúng với n = k + 1 tức là c/m \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{9}{20}\)
Ta có: VT = \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\)
1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)
=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)
b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)
lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)
Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)
2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 4x = 8(20 + xy)
=> x = 2(20 + xy)
=> x = 40 + 2xy
=> x - 2xy = 40
=> x(1 - 2y) = 40
Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)
mà x(1 - 2y) = 40
=> 1 - 2y \(\inƯ\left(40\right)\)(2)
Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)
Nếu 1 - 2y = 1 => x = 40
=> y = 0 ; x = 40
Nếu 1 - 2y = 5 => x = 8
=> y = -2 ; x = 8
Nếu 1 - 2y = -1 => x = -40
=> y = 1 ; y = - 40
Nếu 1 - 2y = -5 => x = -8
=> y = 3 ; x =-8
Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)
4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)
b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
\(a)=\frac{7}{25}+\frac{4}{13}-\frac{5}{2}+\frac{18}{25}-\frac{17}{13}\)
\(=1-1-\frac{5}{2}\)
\(=-\frac{5}{2}\)