Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
Câu 6 :
Vì bình phương một số luôn lớn hơn hoặc bằng 0
Mà tổng của chúng bằng 0
\(\Rightarrow2x+3=3x-2=0\)
\(\Leftrightarrow2x-3x=-2-3\)
\(\Leftrightarrow-x=-5\)
\(\Leftrightarrow x=5\left(\text{Thỏa mãn}\right)\)
Vậy có số hữu tỉ x thỏa mãn
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left(3x-2\right)^2\ge0\end{cases}\Rightarrow\left(2x+3\right)^2+\left(3x-2\right)^2\ge0}\)
dấu = xảy ra khi: \(\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}}\)
=> ko có giá trị x nào t/m để \(\left(2x+3\right)^2+\left(3x-2\right)^2=0\)
p/s: Trần Thanh Phương sai rồi
a, Đặt \(A=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)
\(\Rightarrow2A=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)
\(\Rightarrow2A-A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
b,\(7^{x+2}+2.7^{x-1}=345\)
\(7^{x-1}.\left(7^3+2\right)=345\)
\(\Rightarrow7^{x-1}.345=345\)
\(\Rightarrow7^{x-1}=345:345=1\)
\(\Rightarrow7^{x-1}=7^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
1.
M = 22010 - ( 22009 + 22008 + ... + 21 + 20 )
đặt N = 22009 + 22008 + ... + 21 + 20
2N = 22010 + 22009 + ... + 22 + 21
2N - N = ( 22010 + 22009 + ... + 22 + 21 ) - ( 22009 + 22008 + ... + 21 + 20 )
N = 22010 - 20
Thay N vào ta được :
M = 22010 - ( 22010 - 20 )
M = 22010 - 22010 + 20
M = 20 = 1
2.
Ta có :
2332 < 2333 = ( 23 ) 111 = 8111
3223 > 3222 = ( 32 ) 111 = 9111
Vì 2332 < 8111 < 9111 < 3223
\(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
\(2^{2009}+2^{2008}+.......+2+1=b\)
\(\Rightarrow2b=2^{2010}+2^{2009}+.........+2^2+2\)
\(\Rightarrow2b-b=2^{2010}-1\Rightarrow b=2^{2010}-1\)
\(\Rightarrow A=2^{2010}-b=2^{2010}-\left(2^{2010}-1\right)=1\)