Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)
b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)
hay x=4
Bài 2:
a: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
dựa vào hệ thức 1/AH^2=1/AD^2+1/AB^2
Trong tg ADC vuông tại D đường cao DH tính AC
dựa vào hệ thức AD^2=AH*AC => HC
2)Kẻ AE//BD (E thuộc CD)
=> AE vg AC, AE=BD
trong tg AEC vuông tại A đường cao AH tính được AH
3)Đk: pt viết thành
can(x-2)(x-3)+can(x+1)=can(x-2)+can(x-...
<=>(can(x-3))(can(x-2)-can(x+1))-(can(...
<=>(can(x-2)-can(x+1))(can(x-3)-1)=0
<=> (can(x-2)-can(x+1))=0 (*) hoặc can(x-3)-1=0 (**)
giải các pt trên :
(**) <=> can(x-3)=1
4) pt viết thành:
bình phương 2 vế và chuyển vế
x^2+2x-8=0
<=>x(x+4) -2(x+4)
<=> x=2; x=-4
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)