K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Bài1:

a)Ta có:

\(-203< 0;\dfrac{1}{2017}>0\)

Nên \(-203< \dfrac{1}{2017}\)

b)\(\dfrac{7}{29}và\dfrac{12}{47}\)

c)Đặt \(A=\dfrac{10^{11}+1}{10^{12}+1}\);\(B=\dfrac{10^{12}+1}{10^{13}+1}\)

Ta có:\(10A=\dfrac{10^{12}+1+9}{10^{12}+1}=1+\dfrac{9}{10^{12}+1}\)

\(10B=\dfrac{10^{13}+1+9}{10^{13}+1}=1+\dfrac{9}{10^{13}+1}\)

Do đó:\(10A>10B\Rightarrow A>B\)

Bài2:

a)\(500>2^x>100\)

Ta có:\(100< 2^7< 2^8< 500\)

\(\Rightarrow x\in\left\{7;8\right\}\)

Vậy...

Câu sau tương tự

a) Ta có: \(-203< 0;\dfrac{1}{2017}>0\)

\(\Rightarrow\dfrac{1}{2017}>-203\)

18 tháng 7 2015

câu này khó tớ không làm được mong các bạn giải hộ tớ

 

 

8 tháng 3 2018

a. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

b. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)

\(=1-1+1-1+...+1-1\)

\(=0\)

8 tháng 3 2018

d.

Thay x = 1 và y= -1 vào biểu thức ta được:

\(1^{10}.\left(-1\right)^{10}+1^9.\left(-1\right)^9+1^8.\left(-1\right)^8+...+1.\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

31 tháng 12 2016

1) (x^2 - 1)(x^2 - 4)(x^2 - 7)(x^2 - 10) < 0

<=> [(x^2 - 1)(x^2 - 10)][(x^2 - 4)(x^2 - 7)] < 0

<=> (x^4 - x^2 - 10x^2 + 10)(x^4 - 4x^2 - 7x^2 + 28) < 0

<=> (x^4 - 11x^2 + 10)(x^4 - 11x^2 + 28) < 0

=> x^4 - 11x^2 + 10 và x^4 - 11x^2 + 28 là 2 số trái dấu

Mà x^4 - 11x^2 + 10 < x^4 - 11x^2 + 28

Nên \(\left\{\begin{matrix}x^4-11x^2+10< 0\\x^4-11x^2+28>0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(x^2-\frac{11}{2}\right)^2-\frac{81}{4}< 0\\\left(x^2-\frac{11}{2}\right)^2-\frac{9}{4}>0\end{matrix}\right.\)\(\Leftrightarrow\frac{9}{4}< \left(x^2-\frac{11}{2}\right)^2< \frac{81}{4}\)

\(\Rightarrow\left[\begin{matrix}\frac{3}{2}< x^2-\frac{11}{2}< \frac{9}{2}\\-\frac{3}{2}>x^2-\frac{11}{2}>-\frac{9}{2}\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}7< x^2< 10\\4>x^2>1\end{matrix}\right.\)

do \(x\in Z\Rightarrow x^2\in N\)=> x2 = 9\(\Rightarrow\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy x = 3; x = -3

2) A = |x - a| + |x - b| + |x - c| + |x - d|

A = |x - a| + |x - b| + |c - x| + |d - x|\(\le\)

|x - a + x - b + c - x + d - x|= |c - a + d - b|

= c - a + d - b ( vì c - a > 0; d - b > 0)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-a\ge0\\x-b\ge0\\x-c\le0\\x-d\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\)

Vậy Min A = c - a + d - b khi \(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\); a < b < c < d

\(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.;a< b< c< d}\)