Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
- \(\frac{x+y}{3}=\frac{y+z}{4}=\frac{x+z}{5}=\frac{y+z-\left(x+y\right)}{4-3}=\frac{y+z-x-y}{1}=\frac{z-x}{1}\)
\(\Rightarrow\frac{x+z}{5}=\frac{z-x}{1}\)\(\Rightarrow x+z=5\left(z-x\right)\)\(\Rightarrow x+z=5z-5x\)\(\Rightarrow x+5x=5z-z\)\(\Rightarrow6x=4z\)\(\Rightarrow\frac{x}{4}=\frac{z}{6}\)(1)
- \(\frac{x+y}{3}=\frac{y+z}{4}=\frac{x+z}{5}=\frac{x+z-\left(z+y\right)}{5-4}=\frac{x+z-z-y}{1}=\frac{x-y}{1}\)
\(\Rightarrow\frac{x+y}{3}=\frac{x-y}{1}\)\(\Rightarrow3\left(x-y\right)=x+y\)\(\Rightarrow3x-3y=x+y\)\(\Rightarrow3x-x=y+3y\)\(\Rightarrow2x=4y\)\(\Rightarrow\frac{x}{4}=\frac{y}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{6}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=6k\end{cases}}\)
Ta có: \(M=10x+y-7z+2019\)
\(\Rightarrow M=10.4k+2k-7.6k+2019\)
\(\Rightarrow M=40k+2k-42k+2019=2019\)
Vậy M = 2019
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
Bạn lần sau đăng ít thôi nhé :)
a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)
=> x = 15 , y = 3
b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)
=> x = 34, y = 4
c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> x = -28 , y=-12
d,e,f,g,h tương tự.
i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)
Làm tương tự các câu còn lại.
j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)
Nếu k = 2 thì x = 8, y = 14
Nếu k = -2 thì x = -8 , y = -14
k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)
Làm tương tự câu j.
\(\text{Áp dụng dãy tỉ lệ bằng nhau ta được:}\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3-1=5\\y=2.4-1=7\\z=2.5-3=7\end{cases}}\)
o) \(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{2.\left(-3\right)}=\frac{y}{-5}=\frac{3z}{3.\left(-4\right)}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}\)
Áp dụng tính chất DTSBN:
\(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}=\frac{3z-2x}{-12-\left(-6\right)}=\frac{36}{-6}=-6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=-6\Rightarrow x=-3.\left(-6\right)=18\\\frac{y}{-5}=-6\Rightarrow y=-5.\left(-6\right)=30\\\frac{z}{-4}=-6\Rightarrow z=-4.\left(-6\right)=24\end{cases}}\)
Vậy x = 18, y = 30, z = 24
p) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\left(\frac{x}{4}\right)^2=\left(\frac{y}{3}\right)^2=\frac{xy}{4.3}=\frac{12}{12}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{4}\right)^2=1\Rightarrow\frac{x^2}{16}=1\Rightarrow x^2=1.16=16=4^2\\\left(\frac{y}{3}\right)^2=1\Rightarrow\frac{y^2}{9}=1\Rightarrow y^2=1.9=9=3^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}4;-4\\y\in\text{{}3;-3\end{cases}}\)Nhớ thêm dấu ''}'' ở đằng sau -4 và -3 nhé
Vậy ...
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
sai không có công thức đó đâu
đặt \(\frac{x}{3}=\frac{y}{5}=k\)
nên 3k = x ; 5k = y
ta có x . y = 60
thay 3k . 5k = 60
15k2 = 60
k2 = 4
k = 2 hoặc k = -2
TH1 k = 2
x = 3 . 2 = 6
y = 5 . 2 =10
TH2 k = -2
x = (-2).3=-6
y=(-2).5=-10