K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Bài 1:

Ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{99}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}\)

\(A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\) nên \(A< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

 

 

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

Giúp mình với:Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?Câu 3:a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)c,Chứng minh...
Đọc tiếp

Giúp mình với:

Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.

Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?

Câu 3:

a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)

b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)

c,Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Câu 4: Tìm một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỷ lệ với 1;2;3.

Các bạn ạ! Mình cảm thấy rất có lỗi khi đã hỏi quá nhiều! Các bạn trả lời cho mình rất nhiệt tình mà mình chỉ trả lời chỉ có vài câu hỏi của các bạn! Mong các bạn lượng thứ! Mình hứa lên lớp thì mình sẽ giảng giải lại cho các bạn. Chúc HỌC24 phát triển mạnh, các bạn học giỏi lên mỗi ngày với HỌC24 nha!

5
20 tháng 6 2016

Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh haha

Câu 1 : 

\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN

<=> 2(n - 1)2 + 3 có GTNN

Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3

=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1

Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1

a: để P là số nguyên thì \(3n-3+5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)

\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)

\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

avt755982_60by60.jpg sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm