K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)

=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)

=> \(15-x+x-12-5+x=7\)

=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)

=> \(\left(15-12-5\right)-7=3x\)

=> \(3x=-2-7\)

=> \(3x=-9\)

=> \(x=\frac{-9}{3}=-3\)

b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)

=> \(x-57-42-23-x=13-47+25-32+x\)

=> \(x-x+x=13-47+25-32+57+42+23\)

=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)

=> \(x=36-104+82-74\)

=> \(x=-60\)

d/ \(\left(x-3\right)\left(2y+1\right)=7\)

Vì 7 là số nguyên tố nên ta có 2 trường hợp:

TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).

TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).

Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).

Bài 1 :

a)x.(x+3)=0

=>  x=0 hoặc x+3=0

ta có: x+3=0

          x   = -3

Vậy x=0 hoặc x=-3

b) (x-2). (5-x) = 0

=> x-2=0 hoặc 5-x =0

TH1   

x-2=0

x   =2

TH2

5-x  =0

  x   =5

Vậy x=5 hoặc x=2

Bài 2

a) Để A có GTNN thì | x: 9| + |y-5| < 0

=> A=1890 +|x:9|+ | y-5| < 1890

Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

25 tháng 1 2020

1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)

\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)

Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5

2) a.   \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)

           \(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)

Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2 

3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)

              \(A^2=ab-bc-ac+bc\)

             \(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)

            \(A^2=0+a\left(b-c\right)\)

           \(A^2=-20.\left(-5\right)=100\)

      \(\Rightarrow A=10\)

Chúc bạn năm mới vui vẻ nha! Happy new year !

                                                                                                       

31 tháng 3 2016

bài 1:rất dễ,nhân chéo sẽ giải đc

bài 2: x+y=-x

=>x+y+z=0

Ta có: \(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}=\frac{0}{21}=0\)

31 tháng 3 2016

bài 1:

\(\frac{1}{2a^2+1}:x=2\)

\(\Leftrightarrow\frac{1}{2a^2+1}.\frac{1}{x}=2\)

\(\Leftrightarrow\frac{1}{\left(2a^2+1\right).x}=2\)

\(\Leftrightarrow x=\frac{1}{\frac{\left(2a^2+1\right)}{2}}=\frac{1}{2a^2+1}.\frac{1}{2}=\frac{1}{\left(2a^2+1\right).2}=\frac{1}{4a^2+2}\)