Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 4a>b <=> 4a-b>0 (*)
Ta có: 4a2+b2=5ab <=> 4a2+b2-5ab=0
<=> 4a2-4ab-ab+b2=0 <=> 4a(a-b)-b(a-b)=0 <=> (a-b)(4a-b)=0
mà 4a-b>0
=> a-b=0 <=> a=b (**)
Từ (*) và (**) suy ra: a,b>0
=> 2a>a ( do a>0)
mà a=b => 2a>b
mà b>0 => 2a>b>0
Vậy 2a>b>0 khi 4a2+b2=5ab và 4a>b
4a2+b2=5ab
<=> 4a2-5ab+b2=0
<=>(4a2-4ab)-(ab-b2)=0
<=>(a-b)(4a-b)=0
<=>a=b hoặc 4a=b
*)TH1: a=b thay vào A ta có
\(A=\dfrac{a^2}{4a^2-a^2}=\dfrac{1}{3}\)
*)TH2: 4a=b thay vào A ta có:
\(A=\dfrac{4a^2}{4a^2-\left(4a\right)^2}=\dfrac{4a^2}{4a^2-16a^2}=-\dfrac{1}{3}\)
ta có: \(4a^2+b^2=5ab< =>4a^2-5ab+b^2=0< =>4a^2-4ab-ab+b^2=0< =>4a\left(a-b\right)-b\left(a-b\right)=0< =>\left(a-b\right)\left(4a-b\right)=0\)
do 2a>b>0=>4a>b>0=> 4a-b khác 0
=> a-b=0<=>a=b
P=\(\dfrac{ab}{4a^2-b^2}=\dfrac{ab}{\left(2a-b\right)\left(2a+b\right)}=\dfrac{ab}{\left(2a-a\right)\left(2a+a\right)}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)
vậy............
chúc bạn hcoj tốt ^^
Ta có: \(4a^2+b^2-5ab=0\Leftrightarrow4a^2-4ab+b^2-ab=0\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
nên \(a=b\) hoặc \(4a=b\)
Vì \(2a>b>0\Rightarrow\frac{2a}{b}>1\), ta lấy \(a=b\)
Thay \(a=b\) vào phân thức \(\frac{ab}{4a^2-4b^2}\), ta được:
\(A=\frac{1}{3}\)
\(4a^2+b^2=5ab\)
\(4a^2-5ab+b^2=0\)
\(4a^2-4ab-ab+b^2=0\)
\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\left(a-b\right)\left(4a-b\right)=0\)
\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)
mà \(2a>b>0\)
\(\Rightarrow a=b\)
Thay a = b vào M, ta có:
\(M=\frac{b\times b}{4b^2-b^2}\)
\(=\frac{b^2}{3b^2}\)
\(=\frac{1}{3}\)
Vậy . . .
a \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)
b \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)
c \(20=4\cdot5>11\)mà \(2\cdot5=10>11\)đâu
sai đề r