Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R 1 nối tiếp R 2 nên điện trở tương đương của mạch lúc này là:
R 1 song song với R 2 nên điện trở tương đương của mạch lúc này là:
Lấy (1) nhân với (2) theo vế ta được R 1 . R 2 = 18 → (3)
Thay (3) vào (1), ta được: R 12 - 9 R 1 + 18 = 0
Giải phương trình, ta có: R 1 = 3Ω; R 2 = 6Ω hay R 1 = 6Ω; R 2 = 3Ω
Điện trở mạch mắc nối tiếp: Rnt = R1 + R2 = 3R1
Vậy U = 0,2.3R1 = 0,6R1
Điện trở mạch mắc song song:
Vậy cường độ dòng điện
→ Đáp án D
Đáp án D
Điện trở mạch mắc nối tiếp R n t = R 1 + R 2 = 3 R 1 .
V ậ y U = 0 , 2 . 3 R 1 = 0 , 6 . R 1
Điện trở mạch mắc song song
Vậy cường độ dòng điện: I = U/R = 0,9A.
Vì R 1 mắc song song R 2 nên: U 1 = U 2 ⇔ I 1 . R 1 = I 1 . R 2
Mà I 1 = 1,5 I 2 → 1,5 I 2 . R 1 = I 2 . R 2 → 1,5 R 1 = R 2
Từ (1) ta có R 1 + R 2 = 10Ω (2)
Thay R 2 = 1,5 R 1 vào (2) ta được: R 1 + 1,5 R 1 = 10 ⇒ 2,5 R 1 = 10 ⇒ R 1 = 4Ω
⇒ R 2 = 1,5.4 = 6Ω
Khi R1 mắc nối tiếp với R2 thì: ↔ R1 + R2 = 40Ω (1)
Khi R1 mắc song song với R2 thì:
Thay (1) vào (2) ta được R1.R2 = 300
Ta có: R2 = 40 – R1 → R1.(40 – R1) = 300 ↔ - R12 + 40R1 – 300 = 0 (*)
Giải (*) ta được: R1 = 30Ω; R2 = 10Ω hoặc R1 = 10Ω; R2 = 30Ω.
R 1 + R 2 = U / I = 40 ( R 1 . R 2 ) / ( R 1 + R 2 ) = U / I ’ = 7 , 5
Giải hệ pt theo R 1 ; R 2 ta được R 1 = 30 ; R 2 = 10
Hoặc R 1 = 10 ; R 2 = 30
Khi mắc nối tiếp:
\(R_{tđ}=R_1+R_2=\dfrac{U}{I}=\dfrac{24}{0,6}=40\left(\Omega\right)\left(1\right)\)
Khi mắc song song:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12}{1,6}=\dfrac{15}{2}\Rightarrow R_1.R_2=\dfrac{15}{2}.40=300\left(\Omega\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}R_1+R_2=40\left(\Omega\right)\\R_1.R_2=300\left(\Omega\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}R_1=\dfrac{300}{R_2}\\\dfrac{300}{R_2}+R_2=40\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}R_1=\dfrac{300}{R_2}\\\dfrac{300+R_2^2}{R_2}=40\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}R_1=\dfrac{300}{R_2}\\\left(R_2-30\right)\left(R_2-10\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}R_1=10\left(\Omega\right)\\R_2=30\left(\Omega\right)\end{matrix}\right.\\\left\{{}\begin{matrix}R_1=30\left(\Omega\right)\\R_2=10\left(\Omega\right)\end{matrix}\right.\end{matrix}\right.\)
1, gọi R1 R2 lần lượt là x1 x2 ta có
khi x1 nt x2 ta có x1+x2=90 (1)
khi x1 // x2 ta có \(\dfrac{x_1.x_2}{x_1+x_2}.4,5=90\Rightarrow\dfrac{x_1.x_2}{x_1+x_2}=20\Rightarrow x_1.x_2=1800\) (2)
từ (1) (2) \(\Rightarrow\left\{{}\begin{matrix}x_1=30\\x_1=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=60\\x_2=30\end{matrix}\right.\)
2, với U1 ta có \(\dfrac{U_1}{I_1}=R\left(1\right)\)
với U2 \(\dfrac{U_2}{I_2}=\dfrac{3U_1}{I_1+12}=R\left(2\right)\)
từ (1) (2) \(\Rightarrow\dfrac{1}{I_1}=\dfrac{3}{I_1+12}\Rightarrow I_1=6\left(A\right)\)