Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-5}{x^2+1}\)
\(=3x^2+x-3+\dfrac{5x-5}{x^2+1}\)
Bài 3:
\(\dfrac{A}{B}=\dfrac{2x^3-x^2-x+1}{x^2-2x}\)
\(=\dfrac{2x^3-4x^2+3x^2-6x+5x+1}{x^2-2x}\)
\(=2x^2+3+\dfrac{5x+1}{x^2-2x}\)
=>\(2x^3-x^2-x+1=\left(x^2-2x\right)\left(2x^2+3\right)+5x+1\)
a/ \(2x^3-x^2-x+1=\left(x^2-2x\right)\left(2x+3\right)+5x+1\)
b/ \(5x^3-x+2=\left(x^2+2x-3\right)\left(5x-10\right)+34x-28\)
Bài 1
a) (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2 : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y
b) (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3
Bài 2
1) (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>
2) 4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0
vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)
* Dạng toán về phép chia đa thức
Bài 9. Làm phép chia:
a. \(3x^3y^2:x^2=3xy^2\)
b.\(\left(x^5+4x^3-6x^2\right):4x^2=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
c. \(\left(x^3-8\right):\left(x^2+2x+4\right)=\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)=x-2\)
d. \(\left(3x^2-6x\right):\left(2-x\right)=-3x\left(2-x\right):\left(2-x\right)=-3x^2\)
e. \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)
\(=\left[\left(x^3-1\right)+\left(2x^2-2x\right)\right]:\left(x^2+3x+1\right)\)
\(=\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]:\left(x^2+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+2x\right):\left(x^2+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+3x+1\right):\left(x^2+3x+1\right)\)
\(=x-1\)
Bài 10: Làm tính chia
( Bài này có thể đặt phép chia hoặc phân tích thành nhân tử của Số bị chia sao cho có một nhân tử chia hết cho số chia)
C1 : Đặt phép tính chia
C2 : Đặt nhân tử chung ,tùy vào từng câu
1. \(\left(x^3+3x^2+x-3\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)
\(=x^2+1\)
2.( \(2x^4-5x^2+x^3-3-3x\) ) : \(x^2-3\)
\(=\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)
2x^4 + x^3 - 5x^2 - 3x - 3 x^2 - 3 2x^2 + x + 1 2x^4 -6x^2 x^3+ x^2 - 3x- 3 x^3 - 3x x^2 -3 x^2 - 3 0
3. (x – y – z)5 : (x – y – z)3
\(=\left(x-y-z\right)^{5-3}\)
\(=\left(x-y-z\right)^2\)
\(=x^2+y^2+z^2-2xy-2xz+2yz\)
4. \(\left(x^2+2x+x^2-4\right):\left(x+2\right)\)
\(=\left[x\left(x+2\right)+\left(x-2\right)\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x+2\right)\left(x+x-2\right):\left(x+2\right)\)
\(=2x-2\)
5.( \(2x^3+5x^2-2x+3\) ) : \(\left(2x^2-x+1\right)\)
2x^3 + 5x^2 - 2x + 3 2x^2 - x + 1 x + 3 2x^3 - x^2 + x - 6x^2 - 3x + 3 6x^2 - 3x + 3 - 0
\(6.\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
2x^3 - 5x^2 + 6x - 15 2x - 5 x^2 + 3 2x^3 - 5x^2 - 6x - 15 6x - 15 - 0
P/S : Tối mk lm tiếp nha bn , bh mk có việc bận
Bài 11.
1. Do đa thức chia có bậc là 4 , đa thức bị chia có bậc 2 nên thương có bậc 2
Đặt : x4 - x3 + 6x2 - x + n = ( x2 - x + 5)( x2 + ax + b)
x4 - x3 + 6x2 - x + n= x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax+5b
x4 - x3 + 6x2 - x + n= x4 - x3( a + 1) + x2( b - a + 5) - x( b - 5a) + 5b
Đồng nhất hệ số , ta có :
* a + 1 = 1 => a = 0
* b - a + 5 = 6 => b = 6 - 5 + a = 1
* b - 5a = 1
* 5b = n => n = 5.1 = 5
Vậy , để............thì n = 5
2. Bài này không phức tạp nên chia bt nha , nhưng mk làm cách đồng nhất nhé ( máy tính nhà mk giống bạn Giang bị lỗi phần chia)
Do : đa thức chia bậc 3 , đa thức bị chia bậc 1 nên đa thức thương có bậc 2
Đặt : 3x3 + 10x2 - 5 + n = ( 3x + 1)( x2 + ax + b)
3x3 + 10x2 - 5 + n = 3x3 + 3ax2 + 3bx + x2 + ax + b
3x3 + 10x2 - 5 + n = 3x3 + x2( 3a + 1) + x( 3b + a) + b
Đồng nhất hệ số , ta có :
* 3a + 1 = 10 => 3a = 9 => a = 3
* 3b + a = 0 => 3b = -3 => b = -1
* b = n - 5 => n = b + 5 = -1 + 5 = 4
Vậy, để........thì : n = 4
3. 2n^2+n-7 n-2 2n - 2n^2-4n 5n-7 +5 - 5n-10 3
Để,.......thì :
n - 2 thuộc Ư( 3)
Lập bảng giá trị , ta có :
n-2 n 1 3 -1 -3 3 5 1 -1
Vậy,....
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
Bài 1 :
Đặt tính chia như bình thường thôi bạn
Kết quả : ( 3x4 + x3 + 6x - 5 ) : ( x2 + 1 ) = 3x2 + x - 3 dư 5x - 2
Bài 2 :
Làm tương tự bài 1 ta có :
A : B = ( 2x3 - x2 - x + 1 ) : ( x2 - 2x ) = 2x + 3 dư 5x + 1
=> A = ( x2 - 2x ) . ( 2x + 3 ) + 5x + 1