Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)
\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)
Từ đó tính được a và b
Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)
\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)
Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)
\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)
\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)
Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3
Rồi từ đó tìm được x,y,z
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra
1)
dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)
ta co b=2-a
a^3+b^3=x+1+7-x=8
a^3+b^3=a^3+b^3+3ab(a+b)
ab(a+b)=0
suy ra a=0 hoac b=0 hoac a=-b
<=> x=-1; x=7
a=-b
a^3=-b^3
x+1=x+7 (vo li nen vo nghiem)
cau B tuong tu
2)
tat ca cac bai tap deu chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so
dang nay co 2 cach
C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)
B^3=10-9B
B=1 cach nay nhanh nhung kho nhin
C2 dat an
\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)
de thay B=a+b
a^3+b^3=10
ab=-3
B^3=10-9B
suy ra B=1
tuong tu giai cac cau con lai.
Bài 1:
a. Đặt \(a=\sqrt[3]{x+1}\); \(b=\sqrt[3]{7-x}\). Ta có:
\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)
\(\Leftrightarrow x=-1\)hoặc \(x=7\)
Bài 2:
a)\(\sqrt{\left(1-x\right)^2}=x-1\)
\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6
b)\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)
\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
Pt to dài trong ngoặc >0
Suy râ x=0;x=-3
câu 1;2a dễ,tự làm đi
câu 2b:
\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)
\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)
<=>3x-x2=0
em hổng có biết đâu vì em chưa hc lp 9 mới lại đề bài dài kinh khủng
a,\(x+4\sqrt{7-x}\) \(-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}-1=0\) (dk \(1\le x\le7\) )
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2+4\sqrt{7-x}-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-1}-4\right)+\left(\sqrt{7-x}\right)\left(4-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-4\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=4\\\sqrt{x-1}=\sqrt{7-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\left(l\right)\\x=4\left(tm\right)\end{cases}}}\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
a, đk : x> = -1
\(\Leftrightarrow2\sqrt{x+1}=10\Leftrightarrow x+1=25\Leftrightarrow x=24\)(tm)
b, đk : x>= 1
\(\Leftrightarrow3\sqrt{x-1}=6\Leftrightarrow x-1=4\Leftrightarrow x=5\)(tm)