K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a) M=x+|x|

TH1: x+x=2x

TH2 : x+(-x)=0

b) N=a+|a|+a+|a|+...+a+|a|

TH1: a+a+a+a+...+a+a ( a có 100 số )

= a.100

TH2: a+(-a)+a+(-a)+...+a+(-a)

= [a+(-a)]+[a+(-a)]+...+[a+(-a)]

=0+0+...+0 = 0.100 = 0

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

2 trường hợp:

1,m;n cùng dấu.

2,m;n khác dấu.

5 tháng 2 2016

Tớ thiếu chỗ : Gọi ƯCLN ( a2+a-1; a2+a+1 ) là d 

5 tháng 2 2016

a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A  - 1

b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )

Vì a+ a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ

Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d

Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau

Biểu thức A là phân số tối giản

17 tháng 9 2023

\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)

\(B=x-\dfrac{2}{x+4}\)

Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)

                              \(\Leftrightarrow2⋮\left(x+4\right)\)

                              \(\Leftrightarrow x+4\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)

Ta có bảng sau

\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)

Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)

24 tháng 2 2020

Thử nha :33

Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)

Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)

\(=x^3-9k^2x-6k-x+2016b\)

\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)

Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)

\(=x^3-9k^2x-12kx-4x+2016b\)

\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)

\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)

Vậy ta có điều phải chứng minh.

25 tháng 4 2018

+) ta có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

        \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

       \(f\left(2\right)=a.2^3+b.2^2+c.2+d=8a+4b+2c+d\)

Nếu f(x) có g/trị nguyên vs mọi x \(\Rightarrow\) d ; a+b+c+d ; 8a+4b+2c+d nguyên

Do d nguyên \(\Rightarrow\) a+b+c nguyên

                             (a+b+c+d)+(a+b+c+d)+2b nguyên\(\Rightarrow\)2b nguyên\(\Rightarrow\)6b nguyên 

+) ta lại có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

mà f(0) nguyên nên d nguyên

   \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

 \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)

\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b+2d\)

\(\Rightarrow2b=f\left(1\right)+f\left(-1\right)-2d\)\(\Rightarrow\)\(2b\)nguyên

mặt khác: f(2)= 8a+4b+2c+d 

     \(\Rightarrow\) f(2) - 2f(1) = 6a-2b+d

     \(\Rightarrow\) 6a = f(2) - 2f(1)+2b-d

     \(\Rightarrow\) 6a nguyên

vậy f(x) = ax^3 + bx^2 + cx + d có giá trị nguyeenvs mọi x nguyên khi và chỉ khi 6a ; 2b ; a+b+c và d là các số nguyên

Bài này có 2 vế nha bn, mk c/m hết r đó, nếu bn thấy dài wa thì thu gọn lại nha! chúc bn hc tốt!

25 tháng 4 2018

nhìn thì dài nhưng ko dài lắm đâu, tại mk dùng cỡ chữ to vài chỗ nên nó dài thôi. bài lm ko dài bn cứ lm đi, đừng ngại!