K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(=\left(x+y\right)^2-4=\left(x+y+2\right)\left(x+y-2\right)\)

b: \(=4x^2-\left(y+2\right)^2\)

\(=\left(2x-y-2\right)\left(2x+y+2\right)\)

c: \(=25a^4-\left(x-2y\right)^2\)

\(=\left(5a^2-x+2y\right)\left(5a^2+x-2y\right)\)

1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)

2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)

3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)

\(=\left(x+1\right)\left(a-b+c\right)\)

6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm ) 

5 tháng 8 2017

Bài 2:

\(A=x^2+4y^2-2x+10-4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)

\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)

\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)

\(=x^2+2xy+y^2+2x+2y+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1\)

Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)

\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)

\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)

Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)

\(D=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:

\(D=4^2-4.4-3=16-16-3=-3\)

5 tháng 8 2017

Bài 3:

a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)

\(=-\left(3x-2\right)^2-1\)

Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)

Vậy N < 0

b) ghi đề cẩn thận lại đi, mk k hiểu

20 tháng 10 2020

Bài 1.

a) -2x( -3x + 2 ) - ( x + 2 )2

= 6x2 - 4x - ( x2 + 4x + 4 )

= 6x2 - 4x - x2 - 4x - 4

= 5x2 - 8x - 4

b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )

= x3 + 8 + 2( x + 1 )( x - 1 )

= x3 + 8 + 2( x2 - 1 )

= x3 + 8 + 2x2 - 2

= x3 + 2x2 + 6

c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2

= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1

= 4

d) x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

Bài 2.

a) 4x2 - 4xy + y2 = ( 2x - y )2

b) 9x3 - 9x2y - 4x + 4y

= 9x2( x - y ) - 4( x - y )

= ( x - y )( 9x2 - 4 )

= ( x - y )( 3x - 2 )( 3x + 2 )

c) x3 + 2 + 3( x3 - 2 )

= x3 + 2 + 3x3 - 6

= 4x3 - 4

= 4( x3 - 1 )

= 4( x - 1 )( x2 + x + 1 )

Bài 3.

2( x - 2 ) = x2 - 4x + 4

⇔ ( x - 2 )2 - 2( x - 2 ) = 0

⇔ ( x - 2 )( x - 2 - 2 ) = 0

⇔ ( x - 2 )( x - 4 ) = 0

⇔ x = 2 hoặc x = 4

24 tháng 10 2016

a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)

b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình

có gì sai xót mong m.n bỏ qua và nhắc nhở ạ

25 tháng 10 2016

mình cảm ơn ạ

Bài 4 :

a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)

b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)

c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)

d)

\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)

e) Trùng câu d

f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)

Bài 5:

a) \(x^3-x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...

b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\

\(\Leftrightarrow2x-3=6\)

\(\Leftrightarrow x=\frac{9}{2}\)

vậy........

c) \(x^4+2x^3-6x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)

Vậy

d) \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy ........

4 tháng 11 2021

a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)

b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)

d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)