K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(ax-by\right)^2+\left(bx+ay\right)^2\)

\(=a^2x^2-2axby+b^2y^2+b^2x^2+2abxy+a^2y^2\)

\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(a^2+b^2\right)\)

c: \(a^2+2ab+b^2-c^2\)

\(=\left(a+b\right)^2-c^2\)

\(=\left(a+b+c\right)\left(a+b-c\right)\)

\(=4m\cdot\left(4m-2c\right)\)

\(=16m^2-8mc\)

5 tháng 8 2015

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

a: \(A=4\cdot15^2-70^2=-4000\)

b: \(B=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

\(=100^2=10000\)

c: \(C=b^2-3b+a^2+3a-2ab\)

\(=\left(a-b\right)^2+3\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+3\right)\)

\(=\left(-5\right)\cdot\left(-5+3\right)=\left(-5\right)\cdot\left(-2\right)=10\)

d: \(D=\left(x-y\right)^3+3xy\left(x-y\right)+3xy\)

\(=\left(-1\right)^3-3xy+3xy\)

=-1

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

5 tháng 2 2017

Bài 1:

a)Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\) (Điều phải chứng minh)

b)Ngược lại ta cũng có : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

5 tháng 2 2017

Bài 2:

a)\(\frac{3m^2+7m+1}{m-3}=\frac{3m\left(m-3\right)+16m+1}{m-3}=\frac{3m\left(m-3\right)}{m-3}+\frac{16m+1}{m-3}=3m+\frac{16m+1}{m-3}\in Z\)

Suy ra \(16m+1⋮m-3\)

\(\frac{16m+1}{m-3}=\frac{16\left(m-3\right)+49}{m-3}=\frac{16\left(m-3\right)}{m-3}+\frac{49}{m-3}=16+\frac{49}{m-3}\in Z\)

Suy ra 49 chia hết m-3....

b)tương tự

28 tháng 1 2015

câu a phân tích ra rồi khử rồi chuyển vế được hằng đẳng thức : (ay-bx)^2 >= 0 với mọi a,b,x,y
Dấu bằng xảy khi ay=bx

câu b khai triển ra, nhân cả 2 vế với 2 rồi chuyển vế, nhóm hạng tử được
(a-c)^2+(a-d)^2+(b-c)^2+(b-d)^2 >= 0 với mọi a,b,c,d
Dấu = xảy ra khi a=b=c=d

9 tháng 4 2017

đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi

9 tháng 4 2017

mk sẽ rút kinh nghiệm cám ơn