K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

14 tháng 7 2015

Gọi ƯCLN(n+1; 2n+3) là d. Ta có:

n+1 chia hết cho d => 2n+2 chia hết cho d

2n+3 chia hết cho d

=> 2n+3-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

25 tháng 1 2015

 ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1

Gọi ƯCLN(n,2n+3) là :d


suy ra:  n chia hết cho d và 2n+3 chia hết cho d

suy ra :    (2n+3) - 2n chia hết cho d

                 3 chia hết cho d 

  suy ra:  d thuộc Ư(3) =( 3,1)

 ta có: 2n +3 chia hết cho 3

            2n chia hết cho 3

           mà (n,3)=1 nên  n chia hết cho 3

vậy khi n=3k thì (n,2n+3) = 3    (k thuộc N) 

   suy ra : n ko bằng 3k thì (n,2n+3)=1

vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản 

   

8 tháng 2 2015

a/ n rút gọn đi còn 1/2+3 bằng 1/5

b/rút gọn 3a hết còn 1/1 vậy bằng 1

18 tháng 10 2015

Đặt (n + 1 ; 2n + 3) = d (d \(\in\) N*)

=> 2n + 3 - 2(n + 1) chia hết cho d

=> 2n + 3 - 2n + 2 chia hết cho d

=> 1 chia hết cho d 

=> d = 1

Do đó A = \(\frac{n+1}{2n+3}\) là phân số tối giản 

18 tháng 10 2015

Gọi ƯC(n+1,2n+3)=d

Ta có: n+1 chia hết cho d=>2.(n+1) chia hết cho d=>2n+2 chia hết cho d

           2n+3 chia hết cho d

=>2n+3-(2n+2) chia hết cho d

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=Ư(1)=1

=>ƯC(n+1,2n+3)=1

Vậy phân số A tối giản

6 tháng 4 2017

Gọi d là WCLN (n + 1; 2n + 3) nên ta có :

\(n+1⋮d\) và \(2n+3⋮d\)

\(\Rightarrow2\left(n+1\right)⋮d\) và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(A=\frac{n+1}{2n+3}\) tối giản (ĐPCM)

6 tháng 4 2017

Gọi d= ƯCLN(n+1;2n+3)

=> n+1 :d

    2n+3 : d  ( mình viết dấu : thay cho dấu chia hết nhé)

=>2.(n+1) :d

    2n+3 :d

=>2n+2:d

  2n+3:d

=>(2n+3)-(2n+2):d

=>1:d

=>d=1

Vậy ƯCLN(n+1;2n+3)=1

Vì ƯCLN(n+1;2n+3)=1 nên A tối giản với n là số tự nhiên

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

23 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

7 tháng 6 2016

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

7 tháng 6 2016

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

16 tháng 8 2018

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

16 tháng 8 2018

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt