Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
:3
Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)
\(\RightarrowĐPCM\)
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.
Với \(x=0\Rightarrow f\left(x\right)=f\left(0\right)=c⋮7\left(1\right)\)
Với \(x=1\Rightarrow f\left(x\right)=f\left(1\right)=a+b+c⋮7\left(2\right)\)
Với \(x=-1\Rightarrow f\left(x\right)=f\left(-1\right)=a-b+c⋮7\left(3\right)\)
Từ \(\left(2\right)\left(3\right)\Rightarrow f\left(1\right)-f\left(-1\right)=a+b+c-a+b-c⋮7\)
\(\Rightarrow2b⋮7\Rightarrow b⋮7\)
Vì \(a+b+c⋮7\) mà \(b⋮7;c⋮7\Rightarrow a⋮7\)
Vậy \(a,b,c⋮7\)
Làm đồng dư được ko ?
Các bạn trả lời hộ mình đi , mình cần gấp lắm