Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 1
D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )2 - 6
Vì - (x - 2 )2 \(\le0\)nên - (x - 2 )2 - 6 \(\le-6< 0\)
Vậy D = 4x - 10 - x2 luôn âm (dpcm)
C=[(x+1)(x-6)][(x-2)(x-3)]
=(x2-5x-6)(x2-5x+6)
=(x2-5x)2-36>=-36
GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5
B=(x-3)2+(x-11)2
=x2-6x+9+x2-22x+121
=2x2-28x+130
=2(x2-14x+65)
=2(x2-2.7x+72-72+65)
=2[(x-7)2-49+65]
=2(x-7)2+32
=> vì 2(x-7)2 >= 0
=>2(x-7)2+32 >= 32
=> GTNN của B=32. Khi x=7
1/
a/ \(P\left(x\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\Rightarrow P\left(x\right)<0\)
b/ \(Q\left(x\right)=-\left(9x^2-24x+16+32\right)=-\left[\left(3x-4\right)^2+32\right]\)
Tương tự như câu a => Q(x)<0
2/
b/ \(B=-\left(x^2-4x+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-5\ge-5\Rightarrow-\left[\left(x-2\right)^2-5\right]\le5\)
=> GTLN(B)=5
c/ Nhân phá ngoặc, rút gọn được
\(C=-x^2\left(x^2+10x+25\right)+36=-x^2\left(x+5\right)^2+36\)
Lý luận tượng tự câu b => \(C\le36\)
=> GTLN(C)=36
1/
( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2
= 2a3
2/
A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinA = 1 <=> x = 1 ; y = 2
B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = -2
=> MinB = 2 <=> x = -2
C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y
Dấu "=" xảy ra khi x = 1/5 ; y = 0
=> MinC = 10 <=> x = 1/5 ; y = 0
D = ( x - 3 )2 + ( x - 11 )2
Đặt t = x - 7
D = ( t + 4 )2 + ( t - 4 )2
= t2 + 8t + 16 + t2 - 8t + 16
= t2 + 32 ≥ 32 ∀ t
Dấu "=" xảy ra khi t = 0
=> x - 7 = 0 => x = 7
=> MinD = 32 <=> x = 7
a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x = 1
b) \(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = 2; y = 4
a, A = x2 - 2x + 2
=(x2 -2x + 1) +1
=(x-1)2 + 1 >= 1
Dấu bằng xảy ra <=> (x-1)2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy...
b, B = x2 - 4x + y2- 8y + 6
B =(x2 - 4x + 4) + (y2- 8y + 16) - 14
B =(x - 2)2 + (y - 4)2 -14 >= -14
Dấu bằng xảy ra + <=> x - 2 = 0
<=> x = 2
+ <=> y - 4 = 0
<=> y = 4
Vậy ...
Bài này dài vc sao làm hết dc.