Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
a) vì M là tđ AB -> AM=1/2AB=5cm
N là tđ AC -> AN=1/2AC= 12cm
áp dụng pytago vào tam giác ANM => MN=13cm
b) theo công thức tính diện tích tam giác ANM (cái này mình chưa biết bạn học chưa, nếu chưa thì nhắn cho mình giải thích cho)
1/2(AM x AN) = 1/2(MN x AH)
=> AM x AN = MN x AH -> 5 x 12 = 13 x AH
=> AH=60/13cm
c) xét 2 tam giác BKM vuông tại K và AHM vuông tại H
có góc AMH + góc BMK ( đối đỉnh )
AM=MB ( M là Tđ AB)
=> 2 tam giác BKM=AHM (cạnh huyền góc nhọn)
d) áp dụng pytago vào tam giác AHM vuông tại H
AM2-AH2=HM2 => HM=MK=25/13cm (vì 2 tam giác ở câu c bằng nhau)
tam giác ABC có góc A vuông
ta có : BC2 = AB2 +AC2 ( định lý pytago )
thay BC2 = 102 + 242
=> BC=26 cm
ta lại có : M là trung điểm của AB => AM=1/2AB=1/2 . 10 =5 cm
tương tự : N là trung điểm của AC => AN = 1/2AC = 1/2 .24 = 12 cm
tam giác AMN vuông tại A , ta có : MN2 = AM2 + AN2 ( định lí pytago )
thay MN2 = 52 + 122
=> MN = 13 cm
Vậy MN = 13 cm
bài 1: a) trong tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)
hay góc A + 700 + 300 = 1800
=> góc A = 1700
\(\widehat{CAI}=90^0-\widehat{BAI}\)
\(\widehat{ACI}=\dfrac{\widehat{ACH}}{2}\)
Do đó: \(\widehat{CAI}+\widehat{ACI}=90^0+\dfrac{\widehat{BAH}}{2}-\widehat{BAI}=90^0\)
hay \(\widehat{AIC}=90^0\)
bạn nào trả lời giúp mình đi