Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
a,c: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(HC=\sqrt{16^2-9^2}=5\sqrt{7}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot CB\)
=>\(CB=\dfrac{16^2}{5\sqrt{7}}=\dfrac{256}{5\sqrt{7}}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(sinB=\dfrac{AC}{BC}=16:\dfrac{256}{5\sqrt{7}}=\dfrac{5\sqrt{7}}{16}\)
=>\(\widehat{B}\simeq56^0\)
=>\(\widehat{C}=90^0-56^0=34^0\)
b: \(sinB=\dfrac{5\sqrt{7}}{16}\)
=>\(cosB=\sqrt{1-sin^2B}=\dfrac{9}{16}\)
\(tanB=\dfrac{5\sqrt{7}}{16}:\dfrac{9}{16}=\dfrac{5\sqrt{7}}{9}\)
\(cotB=1:\dfrac{5\sqrt{7}}{9}=\dfrac{9}{5\sqrt{7}}\)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)