K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

                                                           A B C

a) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :

\(\Rightarrow\)BC2 = AB2 + AC2

\(\Rightarrow\)BC2 = 22 + 22

\(\Rightarrow\)BC2 = 8

\(\Rightarrow\)BC   = \(\sqrt{8}\)

Vậy độ dài cạnh BC là \(\sqrt{8}\)dm.

b) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :

\(\Rightarrow\)BC2 = AB2 + AC2

\(\Rightarrow\)22    = AB2 + AB2  (Vì AB=AC)

\(\Rightarrow\)4      = 2AB2

\(\Rightarrow\)2       = AB2

\(\Rightarrow\sqrt{2}\)= AB

Vậy độ dài cạnh AB = \(\sqrt{2}\)m

c) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :

\(\Rightarrow\)BC2 = AB2 + AC2

\(\Rightarrow\left(\sqrt{18}\right)^2\)= AC2 + AB2  (Vì AB=AC)

\(\Rightarrow\)18 = 2AC2

\(\Rightarrow\)9 = AC2

\(\Rightarrow\)3 = AC

Vậy độ dài cạnh AC = 3

30 tháng 1 2020

a, Xét tam giác ABC vuông cân tại A có:

\(AB^2+AC^2=BC^2\)((định lí pytago)

\(\Rightarrow2^2+2^2=BC^2\)

\(\Leftrightarrow BC^2=8\\ \Leftrightarrow BC=\sqrt{8}\left(dm\right)\)

b), Xét tam giác ABC vuông cân tại A có:

\(AB^2+AC^2=BC^2\)(Định lý Pitago)

\(\Rightarrow AB^2+AC^2=2^2\)

\(\Leftrightarrow2AB^2=4\)

\(\Leftrightarrow AB^2=2\\ AB=\sqrt{2}\left(m\right)\)

c, Xét tam giác ABC vuông cân tại A có:

\(AB^2+AC^2=BC^2\)(Định lý Pitago)

\(\Rightarrow AB^2+AC^2=\sqrt{8}^2\)

\(\Leftrightarrow2AC^2=8\\ \Leftrightarrow AC^2=4\\ \Leftrightarrow AC=2\)

ĐS:.................................

#Châu's ngốc

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Bài 2: D

Bài 3: B

Bài 4: B

bài 5: C

11 tháng 3 2020

a) bạn tự vẽ hình nhé

sau khi kẻ, ta có AC=AH+HC=11

mà tam giác ABH vuông tại H

=> theo định lý Pytago => AH^2+BH^2=AB^2

=>BH=căn bậc 2 của 57

cũng theo định lý Pytago

=>BC^2=HC^2+BH^2

=>BC=căn bậc 2 của 66

11 tháng 3 2020

b) bạn tự vẽ hình tiếp nha

ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A

=>AM=MB=MC

theo định lý Pytago =>do tam giác HAM vuông tại H

=>HM^2+HA^2=AM^2

=>HM=9 => HB=MB-MH=32

=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624

tương tự tính được AC=căn bậc 2 của 4100

=> AC/AB=5/4

CHÚC BẠN HỌC TỐT!!!

25 tháng 1 2016

Làm ơn giúp mình đi mình đang cần gấp lắm

28 tháng 2 2016

de thoi

1. 55 do

2. bc=10

25 tháng 6 2021

Bài 1 :  A B C D 4

Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)

\(\Rightarrow AB=BC=CD=AD=4\)cm 

Áp dụng định lí pytago tam giác ADC vuông tại D ta có : 

\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm 

Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm 

25 tháng 6 2021

Bài 2 : 

A B C D 3 căn27

Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)

Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :

 \(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm 

b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)

c: Số đo góc ở đỉnh là:

\(180-2\cdot20^0=140^0\)

d: Số đó góc ở đáy là:

\(\dfrac{180^0-60^0}{2}=60^0\)

28 tháng 4 2020

Bài 1 :

a) Vì \(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABC\)ta có :

\(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}=\frac{110^0}{2}=55^0\)

b) Xét \(\Delta ABH\)và \(\Delta ACH\)có :

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(AB=AC\left(gt\right)\)

\(AH\)chung

=> \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

=> \(\widehat{HAB}=\widehat{HAC}\)(hai góc tương ứng)

=> AH là tia phân  giác của góc A

Bài 2 : a) Xét \(\Delta ABC\)ta có :

AB2 + BC2 = AC2(định lí)

=> 62 + 82 = AC2

=> 36 + 64 = AC2

=> AC2 = 100

=> AC = 10(cm)

b) Xét \(\Delta ABE\)và \(\Delta AHE\)có :

\(\widehat{B}=\widehat{H}=90^0\)

AE chung

\(\widehat{BAE}=\widehat{HAE}\left(gt\right)\)

=> \(\Delta ABE=\Delta AHE\left(ch-gn\right)\)

c) Vì \(\Delta ABE=\Delta AHE\)=> AB = AH => \(\Delta ABH\)cân tại A

28 tháng 4 2020

bai nay co ke hinh ko

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)