K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

A C B I H E K M N

a) Có thể tham khảo bài của bạn Kunzy nguyễn

b) Kẻ IH vuông góc với AC; IK vuông góc với BC

Do I là giao của 2 đường phân giác => IH = IK 

Tam giác AEB vuông tại A => góc AEB + EBA = 90o

tam giác IMB vuông tại I => góc IMB + MBI = 90o

Mà EBA = MBI (do BI là p/g của góc B)

=> góc AEB = IMB => EIH = MIK 

+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI 

=> tam giác EIH = MIK (g- c- g)

=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB

+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)

=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)

=> IH/AB = 1/3 => BA = 3IH

 

2 tháng 8 2015

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ 

b) tam giác ABE và IBM đồng dạng (3 góc = nhau ) nên AE=AB/2 . trên AC lấy N sao cho AE=EN => BE là trung tuyến ứng của tg ABN , 
ABN cân vì AN=AB 
=> AI là phân giác góc A cũng là trung tuyến . => I là trọng tâm => BE=3IE . 

12 tháng 3 2018

a) Có thể tham khảo bài của bạn Kunzy nguyễn
b) Kẻ IH vuông góc với AC; IK vuông góc với BC
Do I là giao của 2 đường phân giác => IH = IK 
Tam giác AEB vuông tại A => góc AEB + EBA = 90o
tam giác IMB vuông tại I => góc IMB + MBI = 90o
Mà EBA = MBI (do BI là p/g của góc B)
=> góc AEB = IMB => EIH = MIK 
+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI 
=> tam giác EIH = MIK (g- c- g)
=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB
+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)
=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)
=> IH/AB = 1/3 => BA = 3IH

9 tháng 6 2017

tham khảo ne:

https://olm.vn/hoi-dap/question/154181.html

giống nà

25 tháng 8 2018

câu a bài 2 nhá

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ

tham khảo https://olm.vn/hoi-dap/detail/81565525995.html

#Học tốt!!!

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC