Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng
a.
Xét \(\Delta BAD\) và \(\Delta BKD\) có:
\(\left\{{}\begin{matrix}BA=BK\left(gt\right)\\\widehat{ABD}=\widehat{KBD}\left(gt\right)\\BD\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BAD=\Delta BKD\left(c.g.c\right)\)
\(\Rightarrow AD=DK\)
b.
Cũng do \(\Delta BAD=\Delta BKD\Rightarrow\widehat{BKD}=\widehat{BAD}\)
Mà \(\widehat{BAD}=90^0\left(gt\right)\Rightarrow\widehat{BKD}=90^0\)
\(\Rightarrow DK\perp BC\)
\(\Rightarrow\widehat{ABK}=\widehat{CDK}\) (cùng phụ \(\widehat{ACB}\))
c.
Xét hai tam giác ADE và KDC có:
\(\left\{{}\begin{matrix}AD=DK\left(cmt\right)\\\widehat{ADE}=\widehat{KDC}\left(\text{đối đỉnh}\right)\\DE=DC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ADE=\Delta KDC\left(c.g.c\right)\)
\(\Rightarrow\widehat{DAE}=\widehat{DKC}=90^0\)
\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{DAE}=90^0+90^0=180^0\)
\(\Rightarrow B,A,E\) thẳng hàng
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Bài 2:
a: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình
=>NM//AC
hay NM//EF
Ta có: ME⊥AC
NF⊥AC
Do đó: ME//NF
Xét tứ giác MEFN có
ME//FN
MN//FE
Do đó: MEFN là hình bình hành
Suy ra: ME=NF
b: Ta có: MEFN là hình bình hành
nên MN=EF
bạn ghi có sai đề ko chứ ? 1 tam giác làm sao mà có 1 góc =180 độ đc?
góc a = 180 độ !!!