Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Do AB và BC cắt nhau tại B nên toa độ điểm B là nghiệm hệ phương trình
Do đó: B( 2; -1)
Tương tự: tọa độ điểm C( 1; 9)
PT các đường phân giác góc A là:
Đặt T1(x; y) = 2x- 6y+ 7 và T2= 12x+ 4y-3 ta có:
T1(B). T1(C) < 0 và T2(B) T2(C) >0.
Suy ra B và C nằm khác phía so với đường thẳng 2x-6y+7= 0 và cùng phía so với đường thẳng: 12x+ 4y- 3= 0.
Vậy phương trình đường phân giác trong góc A là: 2x- 6y+ 7= 0.
Bằng việc lần lượt giải các hệ phương trình bậc nhất hai ẩn, ta có tọa độ các đỉnh của tam giác là A − 4 7 ; 16 7 , B − 10 11 ; 14 11 , C − 8 ; 6 .
Ta có công thức tính diện tích tam giác ABC là: S = 1 2 . d A , B C . B C = 1 2 2. − 4 7 + 3. 16 7 − 2 13 . − 8 + 10 11 2 + 6 − 14 11 2 = 338 77
Đáp án là phương án C.
Phương trình cạnh \(BC:x-7y+15=0\)
Phương trình cạnh \(AC:2x-y+4=0\)
Hai đường thẳng AH và BH cắt nhau tại H nên tọa đô của H là nghiệm hệ
Vậy H( 2; 0)
Do CH vuông góc với AB mà AB: 7x – y + 4= 0 nên CH có
Suy ra; phương trình CH:
1(x-2) + 7( y-0) = 0
Hay x+ 7y -2= 0
Chọn D.
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)
\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)
B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)
C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)
Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)
Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)
H là trực tâm của tam giác nhỉ.
A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)
B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)
H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)
Phương trình đường thẳng AC: \(y=0\)
Phương trình đường thẳng CH: \(x+2y-1=0\)
C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)
1.
A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)
Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)
Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)